
Life Helpsession
“Life is far too important a thing ever to talk seriously about.”

- Oscar Wilde

CS31
Brian Moore

1

The Algorithm

initialize the board
for # of generations
for each cell
count neighbors
determine next generation state

print board
swap arrays

A high level view (from the handout):

•A living cell with 2 or 3 live neighbors will stay alive, otherwise it will die.
•A dead cell with exactly three neighbors will become a live cell in the next
generation, otherwise it will stay dead.

and:

2

Swapping
• Why do we need to swap arrays?

• all births and deaths happen at the same time

• modifications to the life world cannot be done
in place (on the same array)

• You are not allowed to simply copy the array.
How do you swap, then?

• you will have to be clever about manipulating
pointers (addresses of variables in memory)

• hint: consider how you can use pointers to
access arrays indirectly (loads and stores)

3

Special Cases
• corners and borders

• grid ends, fewer neighbors than usual

• simply count the neighbors “off the grid”
as dead

• test thoroughly

• try various initial conditions

• ex) an isolated 2x2 box of alive cells
should not change between generations

4

“Dost thou love life? Then do not squander time, for that the
stuff life is made of.”
- Benjamin Franklin

5

A Memory Refresher

• memory can be visualized as a sequence of
fixed-size cells

• pointers are simply addresses which refer to a
specific cell in memory

• will be using arrays (pointer arithmetic)

• must keep in mind the size of cells

6

Memory in MIPS

• lw: loads one word (32 bits, 4 bytes) of data from the given
address in RAM into the given register

• the given address must be word-aligned (divisible by 4) - spim
will raise exception otherwise

• lb: similar to lw, but only loads one byte and addresses do not
have to be word-aligned

• la: will load the 32-bit address (in RAM) of the given variable into
the given register. (for example, if foo is at memory location
0x1003, “la $a0 foo” will make register a0 contain 0x1003)

7

Memory in MIPS

• sw: writes the 32-bit (1 word) contents of the given register to
RAM at the given address (which must be word-aligned)

• sb: similar to sw, but writes the 8 least significant bits of the
given register to RAM. Again, the address is not required to be
word-aligned.

8

“Life is like an onion: You peel it off one layer at a time, and
sometimes you weep.”

- Carl Sandburg

9

Stack Management
• the stack is at the end of memory

• everything else (including the “heap”) is
at the beginning of memory

• stack grows towards zero - the beginning
of memory

• sometimes said to grow “down”,
which assumes a diagram rotated
180˚ from this one (with address 0 at
the bottom and the end of memory
at the top)

• the stack pointer (SP) is the address just
above the top of the stack

• top element is just below SP (at SP+4)

• pushing data onto the stack will decrease
SP (moves up in this diagram), popping
will increase SP

Everything
Else

Stack

Beginning of memory (address 0)

End of memory
(address something like 0x7FFFFFF)

Stack Pointer ($sp)

Stack Grows Towards 0
(pushing decreases SP)

Grows Towards End

A
ddresses Increase

10

Pushing

• To push a value onto the stack, the following must happen:

1. decrease the stack pointer (in $sp)
• this reserves space for what you are pushing

2. write the value to the stack
• use MIPS offset notation

• for example:
sub $sp, $sp, 8 # reserve space on the top of the stack for two
 # words (the size of two registers) by decreasing
 # SP by 8 bytes
sw $s0,4($sp) # save s0 on the top of the stack
sw $s1,8($sp) # save s1 on the stack directly under the top
 # (at address SP+8)

11

Popping

• To pop a value off of the stack, the following must happen:

1. read values from the stack
• use offset notation

2. increase SP to reclaim the space which the value took up

• for example, to restore the values we pushed before:
lw $s0,4($sp) # read s0 from the top of the stack
lw $s1,8($sp) # read s1 from the location directly under the
 # top of the stack (at address SP+8)
add $sp, $sp, 8 # reclaim two words of space by adding 8 bytes to
 # the stack pointer

• See the lecture on procedures for more examples

12

“The unexamined life is not worth living.”
-Socrates

13

Mipscope
• Makes writing and debugging

your MIPS programs easier

• written by two of last year’s
students

• still a work in progress, please
tell us about bugs or possible
improvements

• Allows you to set breakpoints in
your assembly where execution
will automatically pause

• You can even step your
program backwards
instruction by instruction

14

“Life is as tedious as a twice-told tale
Vexing the dull ear of a drowsy man.”

- Shakespeare

15

Miscellaneous Tips

• Beyond not copying the entire life world
array, don’t worry too much about efficiency

• Write grid printing routine early on

• To print newlines, have the following in
your .data section:

newline_str: .asciiz “\n”

and use syscall 4 to print newline_str
whenever you need a newline

16

More Miscellaneous Tips
• Just like for procedure calls, only s-registers

(s0-s7) are guaranteed to be preserved across
syscalls, all other registers may change.

• ex) after the execution of

li $t0,13
li $s0,7
print 42 using syscall 1
li $a0,42
li $v0,1
syscall

s0 will still contain 7, but t0 may no longer
contain 13

17

Questions?

18

Some Motivation to Get
You Started...

• “Attack life, it's going to kill you anyway.”

- Steven Coallier

• “Life is full of misery, loneliness, and suffering - and it's all
over much too soon.”

- Woody Allen

• “The supreme irony of life is that hardly anyone gets out of
it alive.”

- Robert Heinlein

• “Life is at best a dream and at worst a nightmare from
which you cannot escape.”

- Mark Twain Have fun!
19

