
Overview Classes Memory Management

Maze Help Session

CS31

Overview Classes Memory Management

Assignment Overview

Help Pascal get out of the maze!

While he earns treasure along the way!

(Demo)

Overview Classes Memory Management

Room Hierarchy

Overview Classes Memory Management

Room Hierarchy

Room Fields

int room id

int neighbors[4] - IDs of neighboring rooms

Cove Fields

int value - How much money Pascal gets

Room Methods

equals, isSearched, getNeighbors
bool movePascalHere (int* money)

Takes a pointer to Pascal’s current amount of money
Returns true (i.e. 1) if Pascal has reached the goal

Cove, Trap, and Goal override movePascalHere

What’s sizeof(Room)?

Overview Classes Memory Management

Room Hierarchy

Room Fields

int room id

int neighbors[4] - IDs of neighboring rooms

Cove Fields

int value - How much money Pascal gets

Room Methods

equals, isSearched, getNeighbors
bool movePascalHere (int* money)

Takes a pointer to Pascal’s current amount of money
Returns true (i.e. 1) if Pascal has reached the goal

Cove, Trap, and Goal override movePascalHere

What’s sizeof(Room)?
= 4 + sizeof(room id) + sizeof(neighbors)

Overview Classes Memory Management

Room Hierarchy

Room Fields

int room id

int neighbors[4] - IDs of neighboring rooms

Cove Fields

int value - How much money Pascal gets

Room Methods

equals, isSearched, getNeighbors
bool movePascalHere (int* money)

Takes a pointer to Pascal’s current amount of money
Returns true (i.e. 1) if Pascal has reached the goal

Cove, Trap, and Goal override movePascalHere

What’s sizeof(Room)?
= 4 + sizeof(room id) + sizeof(neighbors)

= 4 + 4 + 4*4

Overview Classes Memory Management

What You Need to Do

Define the classes and methods for the Room hierarchy
(milestone handin)

Call these methods from inside the search algortihm
(milestone handin)

Implement dynamic memory management (final handin)

Overview Classes Memory Management

What’s in a Class?

Fields

Methods

VTBL

Constructor

Overview Classes Memory Management

Fields

To access a field, you need to know its offset within the object

Define a constant like: queue num items = 4

If $s0 is a pointer to a Queue instance, access the field like:
lw $s1, queue num items($s0)

Overview Classes Memory Management

Methods

Really just procedures

First argument ($a0) is a pointer to this

Include the class name in the procedure name for clarity:
queue enq

Overview Classes Memory Management

VTBL

An array that contains the address of each method’s procedure

The very first word in an object is a pointer to the class’s
VTBL

MIPS has convenient syntax for declaring an array in the .data
section:
fib: .word 1,1,2,3,5,8,13

Use with labels when declaring the VTBL:

.data

queue vtbl: .word object equals, queue enq, queue deq

Define constants for the offsets into the VTBL:
queue vtbl deq = 8

Overview Classes Memory Management

Calling a Method

Look in the VTBL to get the address of the method’s
procedure

If $s0 is pointer to a Queue instance:
lw $t0, ($s0) – pointer to VTBL is now in $t0

lw $t0, queue vtbl enq($t0) – pointer to enq method is
now in $t0

Jump and link to the address in $t0:
move $a0, $s0 – Don’t forget to pass object in $a0
jalr $t0

Overview Classes Memory Management

Constructor and Initializer

Name the constructor like this: construct queue

this is passed in $a0

Don’t forget to call super-class constructor!

What if constructor calls a method?

Overview Classes Memory Management

Constructor and Initializer

VTBL pointer needs to be set first.

Write an initializer named: make queue

this is passed in $a0

Set the VTBL pointer to point to the Queue VTBL

Then call construct queue

Overview Classes Memory Management

Instantiating a Queue

Allocate some memory (e.g. with malloc)

Call make queue

Pass pointer to allocated memory in $a0

Remember to free later!

Overview Classes Memory Management

Queue example (note high-level comments!)

.data

queue_size = 16 # public class Queue extends Object{

queue_num_items = 4 # int num_items;

queue_head = 8 # void* head;

queue_tail = 12 # void* tail;

#

Queue();

queue_vtbl_enq = 4 # void enq(Object* item);

queue_vtbl_deq = 8 # Object* deq();

queue_vtbl_contains = 12 # bool contains(Object* item);

queue_vtbl_empty = 16 # bool empty();

queue_vtbl_print = 20 # void print();

}

__queue_vtbl: .word object_equals, queue_enq, queue_deq, queue_contains,

.text

construct_queue: # ...

make_queue: # ...

...

Overview Classes Memory Management

Memory Management

You implement:

void* malloc(int nbytes)

void free(void* mem)

void init heap()

Notes

void* means “address”
malloc takes number of bytes

malloc must return word-aligned address

Overview Classes Memory Management

For the Milestone

init heap doesn’t need to do anything.

malloc and free can call simple malloc and simple free,
which we provide.

Note: simple malloc does not return word-aligned address –
make sure to handle this in malloc.

You will need to write real memory management for the final
handin.

Overview Classes Memory Management

Heap overview

Heap consists of:

Large block of memory
A free list pointer

In the stencil:

MEM_SIZE = 8000

heap: .word 0:MEM_SIZE

free_lst: .word heap

Overview Classes Memory Management

The Free List

Keeps track of free chunks

Each chunk needs to store:

its size
a pointer to the next chunk

Initially the entire heap is just one huge free chunk

Overview Classes Memory Management

malloc

Iterate the free list and find the first chunk whose size can
accommodate the amount requested

General case:

Reduce the chunk’s size
Bite off the last part of the chunk and return a pointer to it

Edge cases:

The chunk is exactly the right size.
The chunk is bigger than the size needed, but using it would
not leave enough room for the free list metadata.

Overview Classes Memory Management

free

Put the chunk back on the free list

Don’t worry about fragmentation

What two things does each free list node need?

Overview Classes Memory Management

free

Put the chunk back on the free list

Don’t worry about fragmentation

What two things does each free list node need?

Size
Pointer to the next chunk

Overview Classes Memory Management

free

Put the chunk back on the free list

Don’t worry about fragmentation

What two things does each free list node need?

Size
Pointer to the next chunk

How do you find the size?

Overview Classes Memory Management

free

Put the chunk back on the free list

Don’t worry about fragmentation

What two things does each free list node need?

Size
Pointer to the next chunk

How do you find the size?

When you malloc, actually malloc nbytes + 4
Use this extra space to store the size
Look here when you free

Overview Classes Memory Management

Advice

Work in words, not bytes

malloc needs to return word-aligned memory anyways
malloc’s argument must still be bytes
Just divide by 4 and round up

Test malloc/free separately from Maze & pay attention to
edge cases!

	Overview
	Classes
	Memory Management

