CS31

(g <Fr o«

Overview Classes

Assignment Overview

@ Help Pascal get out of the maze!
@ While he earns treasure along the way!
o (Demo)

Memory Management

Overview Classes Memory Management

Room Hierarchy

Object

Room

Cove Trap Goal

Overview Classes Memory Management

Room Hierarchy

Room Fields

(]

¢ int _room_id
o int _neighbors[4] - IDs of neighboring rooms

Cove Fields
@ int _value - How much money Pascal gets
Room Methods

@ equals, isSearched, getNeighbors
¢ bool movePascalHere (int* money)

(]

(]

@ Takes a pointer to Pascal’s current amount of money
o Returns true (i.e. 1) if Pascal has reached the goal

(]

Cove, Trap, and Goal override movePascalHere
What's sizeof (Room)?

(]

Overview Classes Memory Management

Room Hierarchy

@ Room Fields

¢ int _room_id
o int _neighbors[4] - IDs of neighboring rooms

@ Cove Fields
@ int _value - How much money Pascal gets
@ Room Methods

@ equals, isSearched, getNeighbors
¢ bool movePascalHere (int* money)

@ Takes a pointer to Pascal’s current amount of money
o Returns true (i.e. 1) if Pascal has reached the goal

@ Cove, Trap, and Goal override movePascalHere

@ What's sizeof (Room)?
= 4 + sizeof(_room_ id) + sizeof(_neighbors)

Overview Classes Memory Management

Room Hierarchy

@ Room Fields

@ int _room_id

e int _meighbors[4] - IDs of neighboring rooms
@ Cove Fields

@ int _value - How much money Pascal gets
@ Room Methods

@ equals, isSearched, getNeighbors
¢ bool movePascalHere (int* money)

@ Takes a pointer to Pascal’s current amount of money
o Returns true (i.e. 1) if Pascal has reached the goal
@ Cove, Trap, and Goal override movePascalHere
@ What's sizeof (Room)?
= 4 + sizeof(_room_ id) + sizeof(_neighbors)
4 + 4 + 4%4

Overview Classes Memory Management

What You Need to Do

@ Define the classes and methods for the Room hierarchy
(milestone handin)

@ Call these methods from inside the search algortihm
(milestone handin)

@ Implement dynamic memory management (final handin)

o Fields
@ Methods
o VTBL

@ Constructor

«O>» «Fr «=» <

it
v

!
M)
2
0]

Overview

Fields

Classes Memory Management

@ To access a field, you need to know its offset within the object

@ Define a constant like: queue num items = 4

@ If $s0 is a pointer to a Queue instance, access the field like:
lw $s1, queue num items($s0)

Overview Classes Memory Management

Methods

@ Really just procedures
@ First argument ($20) is a pointer to this

@ Include the class name in the procedure name for clarity:
queue_enq

Overview Classes Memory Management

VTBL

@ An array that contains the address of each method's procedure

@ The very first word in an object is a pointer to the class’s
VTBL

@ MIPS has convenient syntax for declaring an array in the .data
section:
fib: .word 1,1,2,3,5,8,13

@ Use with labels when declaring the VTBL:

.data
_—queue_vtbl: .word object_equals, queue_enq, queue_deq

@ Define constants for the offsets into the VTBL:
queue_vtbl_deq = 8

Overview Classes Memory Management

Calling a Method

@ Look in the VTBL to get the address of the method's
procedure

o If $s0 is pointer to a Queue instance:
lw $t0, ($s0) — pointer to VTBL is now in $t0
lw $t0, queue_vtbl_enq($t0) — pointer to enq method is
now in $t0

@ Jump and link to the address in $t0:
move $a0, $s0 — Don't forget to pass object in $a0
jalr $tO

Overview Classes Memory Management

Constructor and Initializer

@ Name the constructor like this: construct_queue
@ this is passed in $a0
@ Don't forget to call super-class constructor!

@ What if constructor calls a method?

Overview Classes Memory Management

Constructor and Initializer

VTBL pointer needs to be set first.

Write an initializer named: make_queue

°
°

@ this is passed in $a0

@ Set the VTBL pointer to point to the Queue VTBL
°

Then call construct_queue

Overview Classes Memory Management

Instantiating a Queue

@ Allocate some memory (e.g. with malloc)
o Call make_queue
@ Pass pointer to allocated memory in $a0

@ Remember to free later!

Overview Classes Memory Management

Queue example (note high-level comments!)

.data
queue_size = 16 # public class Queue extends Object{
queue_num_items = 4 # int num_items;
queue_head = 8 # voidx head;
queue_tail = 12 # void* tail;

#

Queue();
queue_vtbl_enq = 4 # void enq(Object* item);
queue_vtbl_deq = 8 # Object* deq();
queue_vtbl_contains = 12 # bool contains(Object* item);
queue_vtbl_empty = 16 # bool empty(Q);
queue_vtbl_print = 20 # wvoid print();

#}
__queue_vtbl: .word object_equals, queue_enq, queue_deq, queue_c

.text

construct_queue: # ...
make_queue: # ...

...

Overview Classes

Memory Management

@ You implement:
o void* malloc(int nbytes)
@ void free(void* mem)
@ void init_heap()

@ Notes

o void* means “address”
@ malloc takes number of bytes
@ malloc must return word-aligned address

Memory Management

Overview Classes Memory Management

For the Milestone

@ init_heap doesn't need to do anything.

@ malloc and free can call simple malloc and simple_free,
which we provide.

@ Note: simple malloc does not return word-aligned address —
make sure to handle this in malloc.

You will need to write real memory management for the final
handin.

Overview Classes Memory Management

Heap overview

@ Heap consists of:
o Large block of memory
o A free list pointer

@ In the stencil:

MEM_SIZE = 8000
heap: .word O:MEM_SIZE

free_lst: .word heap

Overview Classes Memory Management

The Free List

@ Keeps track of free chunks
@ Each chunk needs to store:
o its size
@ a pointer to the next chunk

@ Initially the entire heap is just one huge free chunk

Overview Classes Memory Management

malloc

@ Iterate the free list and find the first chunk whose size can
accommodate the amount requested
o General case:
o Reduce the chunk’s size
o Bite off the last part of the chunk and return a pointer to it
o Edge cases:

@ The chunk is exactly the right size.
@ The chunk is bigger than the size needed, but using it would
not leave enough room for the free list metadata.

Overview Classes Memory Management

free

@ Put the chunk back on the free list

@ Don't worry about fragmentation
@ What two things does each free list node need?

Overview Classes Memory Management

free

@ Put the chunk back on the free list

@ Don't worry about fragmentation
@ What two things does each free list node need?

o Size
@ Pointer to the next chunk

Overview Classes Memory Management

free

@ Put the chunk back on the free list

@ Don't worry about fragmentation
@ What two things does each free list node need?

o Size
@ Pointer to the next chunk

@ How do you find the size?

Overview

free

Classes

@ Put the chunk back on the free list

@ Don't worry about fragmentation

@ What two things does each free list node need?
@ Size
¢ Pointer to the next chunk

@ How do you find the size?

@ When you malloc, actually malloc nbytes + 4
@ Use this extra space to store the size
@ Look here when you free

Memory Management

Overview Classes Memory Management

Advice

@ Work in words, not bytes
@ malloc needs to return word-aligned memory anyways
o malloc's argument must still be bytes
o Just divide by 4 and round up
@ Test malloc/free separately from Maze & pay attention to
edge cases!

	Overview
	Classes
	Memory Management

