

RISC Helpsession

Overview

● Moon1 vs. RISC

● Buses & Tri-states

● Using RAMs and ROMs

● Jumps

● Question and Answer

Moon1 vs. RISC
What's the Same?

● Single cycle

● Stores data and program in different parts

● Uses a control ROM

● Uses registers to store data

● Subtracts

● Compares

● Jumps

Moon1 vs. RISC
What's the Same?

● Bottom line: there's a lot of similarities!

● Make sure you understand Moon1 before working on
RISC

● This will make your life much easier

● Of course there are a few differences...

Moon1 vs. RISC
So What's Different?

* the RAM has the same control scheme as the RAM you built for HW 3

Moon 1 RISC

Registers 1 Register
(Accumulator)

8 Registers

RAM Uses custom RAM
component

Uses built-in RAM component*

Uses Buses No Yes, or multiplexer

Jumps Absolute Relative to PC

Does Addition No Yes

Registers in RISC

● 8 registers – r0, r1, ..., r7 (0000,0001, ..., 0111)

● Design changes with 8 registers:

– We must have some way of choosing which
register we want to use.

– That's what the extra fields in the instruction are
for!

– The 4-bit Src A and Src B fields address reads
from the register file.

– The 4-bit Dest field addresses writes.

Tri-States/Controlled Buffers
● Parts

– Input data

– Output data

– Impedance control

● High Impedance

– When impedance control is low (off), output data does not go
through

– When impedance control is high (on), output data does go
through

● Uses

– Making Buses

Tri-States in Logisim
● Tri-States are called Controlled Buffers in Logisim.

They look like this:

● The top input is the control

● If the control is high, value on each of the inputs on the
left will be allowed through to the corresponding
outputs on the right

● This might seem kind of weird, but it turns out to be
really useful in RISC

Buses
● What is a bus?

– A data wire that takes on the value of exactly one of many input
sources.

● How to make a bus?

– Multiple sets of data go through tri-states and then merge into one
data wire.

– Can only have 1 of the tri-states connected to the wire high at a
time. If more than 1 are on a race condition will occur. If 0 are on
the data wire will have high impedance.

● When to use a bus?

– Whenever input and output need to be on the same wires.

Bus Example – The Problem

This is a simple telegraph system used for sending Morse code
across a great distance. Notice that you have to run two 50
gazillion mile cables between the two locations. Given that the
two locations always alternate sending messages (i.e. they
never send messages at the same time), how can we reduce
the amount of cabling?

Bus Example – Attempted Fix

This looks like it might work, but it wont. Suppose 'Input 2' is on,
but 'Input 1' is off. What is the value on the wire? One switch
says it's high, and the other says it's low. So they fight, we have
a race condition, and nobody's happy :-(

Bus Example – Real Fix

The solution is to create a bus. Put a tri-state between each of the
switches and the main wire. In this case, we've chosen to control the
tri-states with two additional switches, which in this problem would be
analogous to “transmit” switches. Note that exactly one of 'Control 1'
and 'Control 2' should be on at any time...

Using RAMs and ROMs
● You'll be using the built-in RAM component for the

RAM.

● And the built-in ROM for your ROM.

● Note that a ROM is just a slightly re-wired RAM;
nothing special.

Using RAMs and ROMs
● Oops, how does the RAM work again?

– Same as specs for your RAM in HW3:

● Where do you use them?
– 1 or 2 control ROMs

– 1 Program ROM

– 1 RAM for Storage

Action sel ld

Read 1 1

Write on rising edge of clock 1 0

Disconnect (High-Impedance) 0 x

● You can edit RAM/ROM directly with the Poke tool.

● Right-click on a RAM and click “Edit Contents...” to Save and
Load from a file.

– The ROM files are just text-based, with a simple format.
● Useful (but not mandatory) tip: you can write your own

assembler for RISC Assembly Language to save yourself time
creating programs.

– And you can write a simple simulator to make sure your
RISC programs are actually correct.

– This will help a lot in debugging your circuitry.

Dealing with ROM Data

Jumps
● In RISC, jumps are relative to program counter.

– Need to add the jump value to the program counter.

● It jumps if value in src register is greater than 0.
– How to check if a number is >0 with gates?

Questions?

Good Luck!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

