

Project VM
(or: Project Address)

Help Session

Motivation

Programs Like Predictability

Typical
Address
Space

Two Programs – Now What???

Virtual Memory To The Rescue!

Step 1:
Divide

Memory
Into

4096 byte
“Pages”

Virtual Pages are Mapped to
Physical Frames

Another Motivation:
Sometimes Memory Isn't Big Enough

● Virtual Pages are “backed” by the hard disk

● If a page isn't found in physical memory, the
hardware generates a page fault

● Upon a page fault, the operating system finds the
page on disk and pages it in to physical memory

● Demand paging: memory starts empty, and pages
are paged in only when they are first accessed

What if Physical Memory is Full?

Have to Evict a Page: But Which One?

● Random

● LRU: Least Recently Used

● LFU: Least Frequently Used

The Page Table

● Linear page table (i.e. not segmented, not inverted)

● One row per virtual page number

● Columns
● 2 words (32 bit)
● 4 bits
● You decide how to use these

– You don't need all of them

– DOCUMENT IN YOUR README!!!!

Assumptions

● 32-bit address space

● 4k pages
● should work with any page size – use getPageSize()

● Only one program

● No TLB

● No cache

● Page table doesn't take up memory
● No paging the page table

Methods To Implement

● long accessMemory (MIPSMachine m, long vaddr, boolean isStore)

● void handlePageFault (MIPSMachine m, long vaddr)

● void startup (MIPSMachine m)

● void shutdown (MIPSMachine m)

Note: they all take MIPSMachine

accessMemory

accessMemory Rules

● Usually done in hardware with gates

● Keep the code short and simple

● Obey the rules in the stencil code

● This is the easy method

handlePageFault

● Input: the virtual address that wasn't found in
physical memory

● Post-condition:
● The virtual address is in physical memory
● accessMemory will be called again

handlePageFault

1. Choose a location in physical memory
● If there's an unused frame, use it
● If physical memory is full, choose a page to evict

2.Evict the page (if applicable)

3.Page in the requested page

4.Update the page table

PageTable Methods
● void setWord0 (long vpn, long l)
● void setWord1 (long vpn, long l)
● void setBit0 (long vpn, boolean b)
● void setBit1 (long vpn, boolean b)
● void setBit2 (long vpn, boolean b)
● void setBit3 (long vpn, boolean b)
● long getWord0 (long vpn)
● long getWord0 (long vpn)
● boolean getBit0 (long vpn)
● boolean getBit1 (long vpn)
● boolean getBit2 (long vpn)
● boolean getBit3 (long vpn)

pageIn/pageOut (MIPSMachine)

● boolean pageIn (long vpn, long physicalAddr)
boolean pageOut (long vpn, long physicalAddr)

● Where is the page stored on disk?
● It's a black box – don't worry about it

● What if it's not found on disk?
● pageIn/pageOut return false
● you throw a SegmentationFault exception

● Expensive – don't page out if you don't need to

MIPSMachine

● long getInstructionCount ()
● Strictly increasing – where might you need this?

● int getMemorySize ()
● int getPageSize ()

● Don't hard code 4096!

● PageTable getPageTable ()
● void setPageTable (PageTable pt)

● Only needs to be called once

● PageTable newPageTable ()

A Question

The very first instruction in a program is:

lw $t0, freelist

Does this instruction cause a page fault?

Yes
(Remember, physical memory starts out empty)

A Question

The very first instruction in a program is:

lw $t0, freelist

Does this instruction cause a page fault?

Yes
(Remember, physical memory starts out empty)

Another Question

The very first instruction in a program is:

add $s0, $s0, 10

Does this instruction cause a page fault?

Yes
(Remember, physical memory starts out empty)

Another Question

The very first instruction in a program is:

add $s0, $s0, 10

Does this instruction cause a page fault?

Yes
(Remember, instructions come from memory too)

Back to the First Question

The very first instruction in a program is:

lw $t0, freelist

How many times does this instruction page fault?

Yes
(Remember, physical memory starts out empty)

Back to the First Question

The very first instruction in a program is:

lw $t0, freelist

How many times does this instruction page fault?

Twice
(Once for instruction, once for freelist)

Running the Emulator

● If you're using ant:
● ./run-vm arguments program

● Arguments (all optional)
● -lfu, -lru, -random Sets the replacement strategy
● -pages n Sets the size of physical memory
● -input filename Read input from the given file
● -debug Enable debug mode
● -v Enable visualizer

Programs

● TA-provided programs
● tests/primes Prime number generator
● tests/life Life (doesn't use much memory)
● tests/knapsack Knapsack problem

– Use -input with knapsack.5, knapsack.100, or knapsack.1000

● Write your own!
● mips-as MIPSFILE EXEFILE

Demo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

