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Motivation



  

Programs Like Predictability

Typical
Address
Space



  

Two Programs – Now What???



  

Virtual Memory To The Rescue!

Step 1:
Divide

Memory
Into

4096 byte
“Pages”



  

Virtual Pages are Mapped to
Physical Frames



  

Another Motivation:
Sometimes Memory Isn't Big Enough

● Virtual Pages are “backed” by the hard disk

● If a page isn't found in physical memory, the 
hardware generates a page fault

● Upon a page fault, the operating system finds the 
page on disk and pages it in to physical memory

● Demand paging: memory starts empty, and pages 
are paged in only when they are first accessed



  

What if Physical Memory is Full?



  

Have to Evict a Page: But Which One?

● Random

● LRU: Least Recently Used

● LFU: Least Frequently Used



  

The Page Table

● Linear page table (i.e. not segmented, not inverted)

● One row per virtual page number

● Columns
● 2 words (32 bit)
● 4 bits
● You decide how to use these

– You don't need all of them

– DOCUMENT IN YOUR README!!!!



  

Assumptions

● 32-bit address space

● 4k pages
● should work with any page size – use getPageSize()

● Only one program

● No TLB

● No cache

● Page table doesn't take up memory
● No paging the page table



  

Methods To Implement

● long accessMemory (MIPSMachine m, long vaddr, boolean isStore)

● void handlePageFault (MIPSMachine m, long vaddr)

● void startup (MIPSMachine m)

● void shutdown (MIPSMachine m)

Note: they all take MIPSMachine



  

accessMemory



  

accessMemory Rules

● Usually done in hardware with gates

● Keep the code short and simple

● Obey the rules in the stencil code

● This is the easy method



  

handlePageFault 

● Input: the virtual address that wasn't found in 
physical memory

● Post-condition:
● The virtual address is in physical memory
● accessMemory will be called again



  

handlePageFault 

1. Choose a location in physical memory
● If there's an unused frame, use it
● If physical memory is full, choose a page to evict

2.Evict the page (if applicable)

3.Page in the requested page

4.Update the page table 



  

PageTable Methods
● void setWord0 (long vpn, long l)
● void setWord1 (long vpn, long l)
● void setBit0 (long vpn, boolean b)
● void setBit1 (long vpn, boolean b)
● void setBit2 (long vpn, boolean b)
● void setBit3 (long vpn, boolean b)
● long getWord0 (long vpn)
● long getWord0 (long vpn)
● boolean getBit0 (long vpn)
● boolean getBit1 (long vpn)
● boolean getBit2 (long vpn)
● boolean getBit3 (long vpn)



  

pageIn/pageOut (MIPSMachine)

● boolean pageIn (long vpn, long physicalAddr)
boolean pageOut (long vpn, long physicalAddr)

● Where is the page stored on disk?
● It's a black box – don't worry about it

● What if it's not found on disk?
● pageIn/pageOut return false
● you throw a SegmentationFault exception

● Expensive – don't page out if you don't need to



  

MIPSMachine

● long getInstructionCount ()
● Strictly increasing – where might you need this?

● int getMemorySize ()
● int getPageSize ()

● Don't hard code 4096!

● PageTable getPageTable ()
● void setPageTable (PageTable pt)

● Only needs to be called once

● PageTable newPageTable ( )



  

A Question

The very first instruction in a program is:

lw $t0, freelist

Does this instruction cause a page fault?

Yes
(Remember, physical memory starts out empty)



  

A Question

The very first instruction in a program is:

lw $t0, freelist

Does this instruction cause a page fault?

Yes
(Remember, physical memory starts out empty)



  

Another Question

The very first instruction in a program is:

add $s0, $s0, 10

Does this instruction cause a page fault?

Yes
(Remember, physical memory starts out empty)



  

Another Question

The very first instruction in a program is:

add $s0, $s0, 10

Does this instruction cause a page fault?

Yes
(Remember, instructions come from memory too)



  

Back to the First Question

The very first instruction in a program is:

lw $t0, freelist

How many times does this instruction page fault?

Yes
(Remember, physical memory starts out empty)



  

Back to the First Question

The very first instruction in a program is:

lw $t0, freelist

How many times does this instruction page fault?

Twice
(Once for instruction, once for freelist)



  

Running the Emulator

● If you're using ant:
● ./run-vm arguments program

● Arguments (all optional)
● -lfu, -lru, -random Sets the replacement strategy
● -pages n Sets the size of physical memory
● -input filename Read input from the given file
● -debug Enable debug mode
● -v Enable visualizer



  

Programs

● TA-provided programs
● tests/primes Prime number generator
● tests/life Life (doesn't use much memory)
● tests/knapsack Knapsack problem

– Use -input with knapsack.5, knapsack.100, or knapsack.1000 

● Write your own!
● mips-as MIPSFILE EXEFILE



  

Demo
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