

CS1010: Theory of Computation

Lecture 13: Other approaches to reduction

Lorenzo De Stefani Fall 2020

Outline

- Mapping Reducibilty
- Non Turing-recognizable languages
- Reductions via computation histories
- The PCP problem (at a glance)

From Sipser Chapter 5.1-5.3

EQ_{TM}

$$EQ_{TM} = \{ < M1, M2 > | L(M1) = L(M2) \}$$

- it is undecidable! We saw reduction from E_{TM}
- we could reduce from A_{TM} as well

- M1 is a TM that accepts \sum^*
- M2 is a TM that accepts \sum^* if M accepts w (simulate M on w)
- f is the reduction function

Computable functions

A function $f: \Sigma^* \to \Sigma^*$ is computable if there exists a TM M such that for every $x \in \Sigma^*$, M halts with just f(x) on its tape

- Example: Let Σ be a fixed alphabet and define f(x) as:
 - If $w = \langle M \rangle$ for some TM, then $f(w) = \langle M' \rangle$ where M' is M with q_{accept} and q_{reject} swapped;
 - Otherwise, f(w) = w
- f is computable!

Mapping reducibility

A language $A\subseteq \Sigma^*$ is mapping reducible to $B\subseteq \Sigma^*$ (write $A\leq_m B$) if there exists a computable function $f:\Sigma^*\to \Sigma^*$ such that for every $x\in \Sigma^*$

$$x \in A$$
 if and only if $f(x) \in B$

That is, the function f maps members of A to members of B and non-members of A to non-members of B

- Example: $A_{TM} \leq_m EQ_{TM}$. The computable function is f(< M, w>) = < M1, M2> such that M1 and M2 are as defined in the previous example
- Then, $< M, w> \in A_{TM} \iff f(< M, w>) \in EQ_{TM}$

Properties of Mapping Reducibility

Theorem 5.22: If $A \leq_m B$ and B is decidable, then so is A

Proof:

- Since $A \leq_m B$ there exists a computable function f that realizes the reduction from A to B
- Since f is computable, there exists M_f that computes the reduction
- Since B is decidable there exists a decider M_B for it.
- We construct a decider M_A for A:
 - 1. On input x for M_A , simulate M_f on x to compute f(x)
 - 2. Simulate M_B on f(x). M_A accepts x iff M_B accepts f(x)
- Since $A \leq_m B$ then M_A decides A
 - 1. By mapping reducibility if $f(x) \in B$ then $x \in A$
 - 2. If M_B accepts then M_A accepts as well

Properties of Mapping Reducibility

Corollary 5.23: If $A \leq_m B$ and A is undecidable, then so is B

Proof:

- There exists a computable function f that realizes the reduction from A to B
- Since f is computable, there exists M_f that computes the reduction
- Assume towards contradiction that there exists a decider M_B for B, construct a decider M_A for A:
 - 1. On input x for M_A , simulate M_f on x to compute f(x)
 - 2. Simulate M_B on f(x). M_A accepts x iff M_B accepts f(x)
- Since $A \leq_m B$ then M_{Δ} decides A \rightarrow contradiction!

Example: DECIDER_{TM} is Undecidable

- $DECIDER_{TM} = \{ \langle M \rangle | TM M \text{ is a decider} \}$
- Show that $A_{TM} \leq_m DECIDER_{TM}$
- Show that there exists a computable function mapping the two languages
 - On input $\langle M, w \rangle$, f outputs $\langle M' \rangle$ such that: M' on input x simulates M on w and
 - M' accepts x if M accepts w
 - Otherwise M' enters an infinite loop

$$< M, w > \in A_{TM} \iff < M' > \in DECIDER_{TM}$$

- To compute f (build M) we modify M
- By construction, this function is computable

Mapping Reducibility and Recognizability

Theorem 5.28: If $A \leq_m B$ and B is recognizable, then so is A

Proof:

- Since $A \leq_m B$ there exists a computable function f that realizes the reduction from A to B
- Since f is computable, there exists M_f that computes the reduction
- Let M_B be a recognizer for B, construct a recognizer M_A for A:
 - 1. On input x for M_A , simulate M_f on input x to compute f(x)
 - 2. Simulate M_B on f(x):
 - 1. M_A accepts (resp., rejects) x, if M_B accepts (resp., rejects) f(x)
 - 2. M_A loops on x, if M_B loops on f(x)
- Since $A \leq_m B$ then M_A recognizes A

Properties of Mapping Reducibility

Corollary 5.29: If $A \leq_m B$ and A is not Turing-recognizable, then neither is B

Proof:

- Since $A \leq_m B$, there exists a computable function f that realizes the reduction from A to B
- Since f is computable, there exists M_f that computes the reduction
- Assume towards contradiction that there exists a recognizer
 M_B for B, construct a recognizer M_A for A:
 - 1. On input x for M_A , simulate M_f on x to compute f(x)
 - 2. Simulate M_B on f(x) so that
 - 1. M_A accepts (resp., rejects) x if M_B accepts (resp., reject) f(x)
 - 2. M_A loops forever on x if M_B loops on f(x)
- Since $A \leq_m B$ then M_A recognizes A \rightarrow contradiction!

EQ_{TM} is not TM recognizable

- We would like to use Corollary 5.29.
- Which non Turing Recognizable language L which is mapping reducible EQ_{TM} to can we use?
 - We know A_{TM} is undecidable.
 - We know A_{TM} is Turing recognizable.
 - This implies A_{TM}^c is not Turing-recognizable
- We need to show $A_{TM}^c \leq_m EQ_{TM}$

$A_{TM}^c \leq_m EQ_{TM}$

We need to construct a computable function f which realizes the reduction from to A_{TM}^c to EQ_{TM} :

- On input $\langle M, w \rangle$, f returns $\langle M1, M2 \rangle$ which on input x
 - M1 rejects x
 - M2 runs w on M and accepts (rejects, loop), if M does
- *f* is computable
 - $< M, w > \in A_{TM} \to L(M1) = L(M2) = \emptyset \to < M1, M2 > \in EQ_{TM}$
 - $< M, w > \notin A_{TM} \rightarrow L(M1) \neq L(M2) \rightarrow < M1, M2 > \notin EQ_{TM}$
- EQ_{TM} is not Turing-recognizable

Mapping reducibility and complement

Theorem : If
$$A \leq_m B$$
 then $A^c \leq_m B^c$

Proof:

- Since $A \leq_m B$, by definition there exists a computable function $f: \Sigma^* \to \Sigma^*$ such that for every $x \in \Sigma^*$, $x \in A$ if and only if $f(x) \in B$
- But then the same function must also be such that for every $x\in \Sigma^*$, $x\in A^c$ if and only if $f(x)\in B^c$

$$A_{TM} \leq_m DECIDER_{TM} \longrightarrow A_{TM}^c \leq_m DECIDER_{TM}^c$$

Example:

- Since A_{TM}^c is non Turing-recognizable, neither is $DECIDER_{TM}^c$

Reminder of configurations of a TM

- At any step a TM is in a certain configuration which is specified by:
 - the state
 - the current reader head location
 - the symbol at the current head location
- We say that a configuration C1 yields C2 if there is a transition which allows to go from C1 to C2

Types of configurations

- Starting configuration: in starting state, head position at the beginning of the input
 - Leftmost position of the tape occupied by the input
- Accepting configuration: in accepting state
- Rejecting configuration: in rejecting state
- Halting configuration: either accepting or rejecting configurations

Computation histories

- An accepting computation history for a TM is a sequence of a configurations C₁C₂...C_i such that:
 - C₁ is the start configuration for input w
 - C_i is an accepting configuration, and
 - Each C_i follows legally from C_{i-1}
- Analogous definition for rejecting computation history
- Computation histories are finite if M does not halt on a given input there is no history
- For Deterministic TM: any accepting or rejecting computation histories for a single input
- Non-Deterministic TMs: multiple possible histories corresponding to the possible execution branches

Linear Bounded Automaton

- Suppose we reduce the power of a TM so that the head never moves outside the boundaries of the input string
- Such a TM is called Linear Bounded Automaton

Lemma 5.8: Let M be a LBA with q states and g symbols in the tape alphabet. There are exactly qngⁿ distinct configurations of a tape of length n

Proof: M can be in one of q states, the head can be on one of n cells, there are gⁿ possible strings on the tape at any time

A_{IBA} is decidable

Theorem 5.9:

 $A_{LBA} = \{ \langle M, w \rangle \mid M \text{ is an LBA that accepts string } w \}$ Is decidable.

- We need to build a decider D for A_{LBA}
- We simulate M on input w
 - If M accepts and halts/rejects D halts/rejects accordingly
- How do we handle loops?
 - Consider the sequence of configuration of M on input $w C_1, C_2, ..., C_j, ..., C_i$
 - If there exist j,i such that $C_i = C_i$ we have a cycle!
 - The computation can continue on that loop forever!
 - Can we detect the loop? From Lemma 5.8 there are a finite number of possible configurations! If there is a loop we will detect in finite time
 - If loop is detected the decide D rejects w!
 - M loops if and only if it does not accept $w \rightarrow D$ is decider!

Computation over Computation Histories

- Consider an accepting computation history of a TM C₁C₂...C_i
- Each configuration C_i can be codified as a string <C_i>!
- Consider the following string

- The set of all valid accepting histories is also a language!
- Such strings have finite lengths!
 - No infinite loop repetitions if accepting history!
- An LBA B can check if a given string is a valid accepting computation history for a TM M accepting w
 - Check that C₁ is a valid starting configuration for M
 - Check that C_i is a valid accepting configuration for M
 - Check that C_{j+1} follows legally from C_j for j=1,2,...i-1
- If $L(B) \neq \emptyset$ then M accepts w!

$E_{LBA} = \{ \langle M, w \rangle | M \text{ is an LBA and } L(B) = \emptyset \}$

- It is undecidable!
- Proof idea: reduction from A_{TM}
 - Assume towards contradiction that R decides E_{LBA}
 - Show how to build a decider D for A_{TM}
 - Use the construction previously seen to obtain an LBA B such that

$$L(B) \neq \emptyset \iff w \in L(M)$$

Given B as input to R, then we have

$$R \text{ rejects } B \iff L(B) \neq \emptyset$$

- Thus, $R \text{ rejects } B \iff w \in L(M)$
- D accepts/rejects if R rejects/accepts B → D decides A_{TM}!
- Contradiction!

The Post-Correspondence Problem

- Are issues of undecidability confined to problems concerning automata and languages?
- No! There are other algorithmic, natural undecidable problems
- The Post Correspondence Problem (PCP) is a tiling problem over strings:
 - A tile, or domino, contains two strings t (top) and b (bottom) $\left|rac{t}{b}
 ight|=\left[rac{ca}{a}
 ight]$
- Consider a set of given dominos

$$\left\{ \left[\frac{b}{ca} \right], \left[\frac{a}{ab} \right], \left[\frac{ca}{a} \right], \left[\frac{abc}{c} \right] \right\}$$

 A match is a list of these dominos so that when concatenated the top and the bottom strings are identical

$$\left[\frac{a}{ab}\right] \left[\frac{b}{ca}\right] \left[\frac{ca}{a}\right] \left[\frac{a}{ab}\right] \left[\frac{abc}{c}\right] = \frac{abcaaabc}{abcaaabc}$$

Some sets have no match!

The Post-Correspondence Problem

- Given a set of dominos, or an instance of the PCP problems we would like to be able to decide whether there exists a match!
- Can we rephrase this is terms of languages?

$$L_{PCP} = \{ \langle P \rangle | P \text{ is an instance of PCP and it has a match} \}$$

- Can we decide the language L_{PCP}?
- Theorem 5.15: L_{PCP} is undecidable!
- Proof idea:
 - Reduction from A_{TM} using computation histories approach!
 - We show the contradiction: if L_{PCP} is decidable so would A_{TM}
 - We will reduce an input <M,w> to a PCP instance that has a mathc if and only if M accepts w!
- If interested in the details check section 5.2