BROWN

Computer Science

CS1010: Theory of Computation

Lecture 13: Other approaches to reduction

Lorenzo De Stefani
Fall 2020

BN Outline

* Mapping Reducibilty

* Non Turing-recognizable languages

* Reductions via computation histories
 The PCP problem (at a glance)

From Sipser Chapter 5.1-5.3

I
10/20/20 Theory of Computation - Fall'20

Lorenzo De Stefani

EQqy, = {<M1,M2>| L(M1)=L(M2)}
it is undecidable! We saw reduction from E;,
we could reduce from A, as well

< M,w >

(r

J

\\

~

accept

accept

reject

reject

) 4 N
Reduction < M1, M2 > Decider
>
f(< M,w>)—>< M1, M2> DEQTM
1\ J

)

e M1lisaTM that accepts Z*
e M2isaTM that accepts Y ™if M accepts w (simulate M on w)

fis the reduction function

10/20/20

Theory of Computation - Fall'20
Lorenzo De Stefani

- Computable functions

A function f : ©* — ¥* is computable if there
exists a TM M such that for every x € Y5 M halts
with just f(z) on its tape

— Example: Let Y] be a fixed alphabet and define f(x) as:

* If w=< M >for some TM, then f(w) =< M’ >where M’
is M with g,ccep AN Qejece SWapped;
* Otherwise, f(w) = w

— f is computable!

10/20/20 Theory of Computation - Fall'20

Lorenzo De Stefani

- Mapping reducibility

CA language A C ™ is mapping reducible to B C X*
(write A <,, B) if there exists a computable function
£ .3 — 1+ such that for every x € >

.z € Aif and only if f(z) € B

~

/

That is, the function f maps members of A to members

of B and non-members of A to non-members of B

e Example: Arar <. EQ7r . The computable function is

f(< M,w >) =< M1, M2 >such that M1 and M2 are as
defined in the previous example

* Then,< M,w >€ Ary <= f(< M,w >) € EQry

Theory of Computation - Fall'20
10/20/20 Lorenzo De Stefani

- Properties of Mapping Reducibility

[Theorem 5.22: If A4 <,, B and B is decidable, then so is A }

Proof:

— Since A <,,, B there exists a computable function f that
realizes the reduction from Ato B

— Since f is computable, there exists M, that computes the
reduction

— Since B is decidable there exists a decider Mg for it.

— We construct a decider M, for A:
1. Oninput x for M,, simulate M. on x to compute f (x)
2. Simulate M; on f(x). M, accepts x iff M accepts f(x)

— Since A <,, B then M, decides A
1. By mapping reducibility if f(z) € Bthen x € A
2. If Mgaccepts then M, accepts as well
B

10/20/20 Theory of Computation - Fall'20

Lorenzo De Stefani

-roperties of Mapping Reducibility

{Corollary 5.23:1f A <,, Band A is undecidable, then so is B}

Proof:

— There exists a computable function f that realizes the
reduction from Ato B

— Since f is computable, there exists M, that computes the
reduction

— Assume towards contradiction that there exists a decider M,
for B, construct a decider M, for A:
1. Oninput x for M,, simulate M; on x to compute f(x)
2. Simulate M; on f(x). M, accepts x iff My accepts f(x)

— Since A <,, B then M, decides A = contradiction!

10/20/20 Theory of Computation - Fall'20

Lorenzo De Stefani

.Xample: DECIDER;,, is Undecidable

e DECIDERy) ={< M > |TM M is a decider}
e Show that ATM Sm DECIDERTM

* Show that there exists a computable function mapping the
two languages

— On input <M, w>, f outputs <M’> such that:
M’ on input x simulates M on w and
e M’ accepts x if M accepts w

e Otherwise M’ enters an infinite loop

<M, w>€ Ay <= < M' > DECIDERT),

— To compute f (build M’) we modify M
— By construction, this function is computable

10/20/20 Theory of Computation --FaII 20 .
Lorenzo De Stefani

-pping Reducibility and Recognizability

[Theorem 5.28:If 4 <,, Band B is recognizable, then so is A}

Proof:

— Since A <,,, B there exists a computable function f that
realizes the reduction from Ato B

— Since f is computable, there exists M, that computes the
reduction

— Let M be a recognizer for B, construct a recognizer M, for A:

1. Oninput x for M,, simulate M; on input x to compute f(x)
2. Simulate Mg on f(x):

1. M, accepts (resp., rejects) x, if Mg accepts (resp., rejects) f(x)
2. M, loopsonyx, if Mg loops on f(x)

— Since A <,,, B then M, recognizes A

Theory of Computation - Fall'20
(2
10/20/20 Lorenzo De Stefani

- Properties of Mapping Reducibility

Corollary 5.29: If A <,,, B and A is not Turing-recognizable,
then neitheris B

Proof:

— Since A <,,, B, there exists a computable function f that
realizes the reduction from Ato B

— Since f is computable, there exists M; that computes the
reduction

— Assume towards contradiction that there exists a recognizer
M; for B, construct a recognizer M, for A:

1. Oninput x for M,, simulate M; on x to compute f(x)
2. Simulate M; on f(x) so that
1. M, accepts (resp., rejects) x if Mg accepts (resp., reject) f(x)
2. M,loops forever on x if Mg loops on f(x)

— Since A <,, B then M, recognizes A = contradiction!

.
10/20/20

Theory of Computation - Fall'20
Lorenzo De Stefani

- EQ.,, is not TM recognizable

 We would like to use Corollary 5.29.

 Which non Turing Recognizable language L
which is mapping reducible EQ;,, to can we use?
— We know A, is undecidable.

— We know A, is Turing recognizable.
— This implies A%,, is not Turing-recognizable

* We need to show A7y, <., EQrpy

Theory of Computation - Fall'20

10/20/20
/20/ Lorenzo De Stefani

11

- ™ <m EQry

We need to construct a computable function f which
realizes the reduction from to A%y, to EQrpy:

* Oninput <M,w>, f returns <M1,M2> which on input x
— M1 rejects x
— M2 runs w on M and accepts (rejects, loop), if M does

* fis computable
— < M,w>€ Arpr — L(M1) =L(M2) =0 < M1,M2 >€ EQry
— < M,w>¢ Appr — L(M1) # L(M2) < M1, M2 >¢ EQry

o EQ7s is not Turing-recognizable

.
Theory of Computation - Fall'20

10/20/20 Lorenzo De Stefani .

-ing reducibility and complement

[Theorem : IfA <,,, B then A'<,, BC}

Proof:

— Since A <,,, B, by definition there exists a computable
function f : ¥* — 3* such that for every x € 2%
r € Aifandonlyif f(z) € B

— But then the same function must also be such that for every
r e X* xe€ Aifand onlyif f(x) € BS

Arng <o DECIDER7y — Ary <., DECIDERT

Example:

— Since A%y, is non Turing-recognizable, neither is DECIDER%,,

10/20/20 Theory of Computation - Fall'20

13
Lorenzo De Stefani

.eminder of configurations of a TM

e Atanystep a TMis in a certain configuration
which is specified by:
— the state
— the current reader head location
— the symbol at the current head location

* We say that a configuration C1 yields C2 if there
is a transition which allows to go from C1 to C2

.
10/20/20 Theory of Computation - Fall'20

4
Lorenzo De Stefani !

-Types of configurations

» Starting configuration: in starting state, head
position at the beginning of the input

— Leftmost position of the tape occupied by the input
* Accepting configuration: in accepting state
* Rejecting configuration: in rejecting state

* Halting configuration: either accepting or
rejecting configurations

f ion - Fall'2
10/20/20 Theory of Computation - Fall'20

1
Lorenzo De Stefani >

- Computation histories

* An accepting computation history for a TM is a sequence of a
configurations C,C,...C; such that:
— C, is the start configuration for input w
— C; is an accepting configuration, and
— Each C, follows legally from C ,

* Analogous definition for rejecting computation history

 Computation histories are finite — if M does not halt on a
given input there is no history

* For Deterministic TM: any accepting or rejecting computation
histories for a single input

* Non-Deterministic TMs: multiple possible histories
corresponding to the possible execution branches

10/20/20 Theory of Computation - Fall'20

16
Lorenzo De Stefani ’

- Linear Bounded Automaton

e Suppose we reduce the power of a TM so that the head never
moves outside the boundaries of the input string

e Such aTM is called Linear Bounded Automaton

Lemma 5.8: Let M be a LBA with g states and g symbols in the
tape alphabet. There are exactly gng" distinct configurations of a
tape of length n

Proof: M can be in one of g states, the head can be on one of n
cells, there are g" possible strings on the tape at any time

Theory of Computation - Fall'20 17

10/20/20
120/ Lorenzo De Stefani

Az, Is decidable

Theorem 5.9:

Arpa={< M,w>| Misan LBA that accepts string w}
Is decidable.
* We need to build a decider D for A g,

 We simulate M on input w
— If M accepts and halts/rejects D halts/rejects accordingly

e How do we handle loops?

— Consider the sequence of configuration of M on input w C,GC,,.... G G
— If there exist j,i such that C; = C; we have a cycle!
— The computation can continue on that loop forever!

— Can we detect the loop? From Lemma 5.8 there are a finite number of
possible configurations! If there is a loop we will detect in finite time

— If loop is detected the decide D rejects w!
— M loops if and only if it does not accept w = D is decider!

B
Theory of Computation - Fall'20

10/20/20 18
120/ Lorenzo De Stefani

-putation over Computation Histories

Consider an accepting computation history of a TM C,C,...C.
Each configuration C, can be codified as a string <C>!
Consider the following string

e H#, ,

Cl C2 C:; C}

#

The set of all valid accepting histories is also a language!

Such strings have finite lengths!
— No infinite loop repetitions if accepting history!
An LBA B can check if a given string is a valid accepting

computation history for a TM M accepting w

— Check that C, is a valid starting configuration for M
— Check that C, is a valid accepting configuration for M
— Check that C;,, follows legally from C, for j=1,2,..i-1

If L(B) # () then M accepts w!

10/20/20

Theory of Computation - Fall'20

- 19
Lorenzo De Stefani

- M,w > |M is an LBA and L(B) = 0}

 Jtis undecidable!

* Proof idea: reduction from A;,

— Assume towards contradiction that R decides E g,
— Show how to build a decider D for A;,
— Use the construction previously seen to obtain an LBA B such that

L(B) #0 <= we L(M)

— Given B as input to R, then we have

R rejects B <— L(B) # ()

— Thus,

R rejects B <— w € L(M)
— D accepts/rejects if R rejects/accepts B = D decides A,,!
— Contradiction!

Theory of Computation - Fall'20

10/20/20
120/ Lorenzo De Stefani

-The Post-Correspondence Problem

* Are issues of undecidability confined to problems concerning
automata and languages?

* Nol!l There are other algorithmic, natural undecidable problems

 The Post Correspondence Problem (PCP) is a tiling problem
over strings: /
— Atile, or domino, contains two strings t (top) and b (bottom) [5]
* Consider a set of given dominos

{SERERE)

e A matchis alist of these dominos so that when concatenated
the top and the bottom strings are identical

[% [c_l; g[a%][abc‘ abcaaabc

a c - abcaaabc
e Some sets have no match!

1

B
10/20/20 Theory of Computation - Fall'20

21
Lorenzo De Stefani

The Post-Correspondence Problem

* Given a set of dominos, or an instance of the PCP problems we
would like to be able to decide whether there exists a match!

* Can we rephrase this is terms of languages?
Lpcp = {< P > |P is an instance of PCP and it has a match}

* Can we decide the language Lyp?
* Theorem 5.15: Ly is undecidable!

* Proofidea:
— Reduction from A;,, using computation histories approach!
— We show the contradiction: if Ly is decidable so would Aq,,

— We will reduce an input <M,w> to a PCP instance that has a mathc if and
only if M accepts w!

* |finterested in the details check section 5.2

