
Lecture 6:

Dynamic Web Pages II

Lecture 6: Dynamic Web Pages

Final Projects
• Team and project assignments posting

o If you have issues, mail the head TAs

• This week
o Team should meet as a group
o Decide responsibilities
o Discuss project ideas and understanding

▪ Make sure you are all on the same page
o Contact sponsor – they are waiting to hear from you

▪ Introduce yourselves
▪ Set up a meeting for this weekend or early next week

1/27/2020 2

Lecture 6: Dynamic Web Pages

HTML = HTML5
• HTML5 is designed to support modern web apps

o More interaction
o More devices

• Multimedia and animations are more common
o A large fraction of web sites are using them
o They shouldn’t require plugins to be usable
o These should be standard in all browsers

• Other features have similar properties
o Simple databases, cookie management, …

• Basic HTML doesn’t provide enough context information
o About the page (for search, readers, …)
o About forms (numbers, dates, …)

2/3/2020 3

Lecture 6: Dynamic Web Pages

HTML5 Forms
• Do forms work on your smart phone/tablet?
• Forms are the basis for much HTML interaction

o But they are quite limiting
o And not well-oriented to tablets / smart phones
o And require JavaScript to validate

• HTML5 significantly expands the input types in forms
o Text, password, submit, radio, checkbox, button
o Color, date, datetime, email, month, number, range, search, tel, time, url, week
o With built-in validation
o Generic regular-expression based validation

2/3/2020 4

Lecture 6: Dynamic Web Pages

HTML5 Canvas
• A canvas is a drawing area on the page

o Use JavaScript to draw on that canvas
o Drawing is similar to Java2D drawing

▪ Similar primitives, transformations, coordinates, etc.
▪ Rectangles, paths, arcs, text
▪ Java Graphics2D maps to HTML5 Context

o Can be used for static graphics and animations

• http://www.youtube.com/watch?v=xnAiEJEBLJg
• http://www.youtube.com/watch?v=oZInfZ0wecw

2/3/2020 5

http://www.youtube.com/watch?v=xnAiEJEBLJg
http://www.youtube.com/watch?v=xnAiEJEBLJg
http://www.youtube.com/watch?v=oZInfZ0wecw
http://www.youtube.com/watch?v=oZInfZ0wecw

Lecture 6: Dynamic Web Pages

SVG Graphics
• Different approaches to graphics

o Procedural calls to draw everything
o Structure representing what should be drawn

• SVG takes the second approach
o The structure is part of the DOM

▪ Can be manipulated by JavaScript
o Objects correspond to various primitives
o Often easier than functional drawing

▪ Refresh handled automatically

• http://www.youtube.com/watch?v=6SDKN-Amlyo

2/3/2020 6

http://www.youtube.com/watch?v=6SDKN-Amlyo
http://www.youtube.com/watch?v=6SDKN-Amlyo

Lecture 6: Dynamic Web Pages

HTML5 Multimedia
• <audio> and <video> tags

o Controls
o Multiple formats can (and have to) be provided

• Examples
<video width="320" height="240" controls="controls">

<source src="movie.mp4" type="video/mp4" />
<source src="movie.ogg" type="video/ogg" />
Your browser does not support the video tag.

</video>
<audio controls="controls“>

<source src="song.ogg" type="audio/ogg" />
<source src="song.mp3" type="audio/mpeg" />
Your browser does not support the audio element.

</audio>

2/3/2020 7

Lecture 6: Dynamic Web Pages

HTML5 Drag and Drop
• Direct manipulation interfaces are sometimes based on drag and

drop
o That’s what users have come to expect

• HTML5 lets any element be dragged
o And any element can be a drop target

• HTML5 also provides JavaScript events to support
o On drag start (set the content of the drag)
o On drag over (allow/disallow drop)
o On drop (use the contents)

• Much simpler to use than Java drag and drop

2/3/2020 8

Lecture 6: Dynamic Web Pages

Drag and Drop Example
<!DOCTYPE HTML>
<html> <head> <script type="text/javascript">
function allowDrop(ev) { ev.preventDefault(); }
function drag(ev) { ev.dataTransfer.setData("Text",ev.target.id); }
function drop(ev)
{
 var data=ev.dataTransfer.getData("Text");
 ev.target.appendChild(document.getElementById(data));
 ev.preventDefault();
}
</script> </head> <body>
<div id="div1" ondrop="drop(event)“ ondragover="allowDrop(event)"></div>
<img id="drag1" src="img_logo.gif" draggable="true“ ondragstart="drag(event)" width="336"
height="69" />
</body> </html>

2/3/2020 9

Lecture 6: Dynamic Web Pages

HTML5 Web Storage

• Cookies are not efficient or secure
o Have to be sent with each HTTP request

• HTML5 offers several new facilities
o Local storage (name-value) of arbitrary data

▪ Permanent, fixed time, or session-based

o Generation of public-private keys
▪ Offers secure communication
▪ Rarely used – use HTTPS instead

2/3/2020 10

Lecture 6: Dynamic Web Pages

HTML5 Geolocation
• HTML5 enables using the current location

o Accurate from a device with GPS
o Approximate from other computers

• Can use this with JavaScript
o Locally (place on a map)
o Globally (send to server)

• Can also get automatic updates
o JavaScript code that is invoked as the position changes
o There’s an event for that

2/3/2020 11

Lecture 6: Dynamic Web Pages

Geolocation Example
<script>

var x=document.getElementByName(“demo”);

function getLocation()

{

 if (navigator.geolocation) {

 navigator.geolocation.getCurrentPosition(showPosition);
 }

 else { x.html("Geolocation is not supported.“);}

}

function showPosition(position)

{

 x.html("Latitude: " + position.coords.latitude +
 "
Longitude: " + position.coords.longitude);

}
</script>

2/3/2020 12

Lecture 6: Dynamic Web Pages

HTML5 Messaging
• Mashups

o Web pages composed of information from multiple sources
o Browsers limit where requests can be sent based on URLs

▪ Make mash-ups difficult to implement
o Messaging allows this to be bypassed in a selective manner
o Usually embedded in libraries – not something you do directly

▪ Maps: Google maps, leaflet.js
▪ Payments: Stripe, Paypal
▪ Other: address decoding, weather, …

• Web Sockets
o Continuous communication with your server
o Easy to set up and use (callback functions on both ends)

2/3/2020 13

Lecture 6: Dynamic Web Pages

Animation on Web Pages
• Is animation a good idea in a web application?
• Something moving (changing) on the screen
• Properties

o Can be one-time or continuous
o Can be smooth or jerky

▪ All animation is jerky, why does it appear smooth
▪ Persistence of vision, frames per second

• Types of animation
o Movies
o Sound
o Bitmap animation (canvas)
o Vector animation (svg, flash)

2/3/2020 14

Lecture 6: Dynamic Web Pages

Data Visualization

• Canvas/SVG
• D3

o http://www.youtube.com/watch?v=0oOC2FYNo1M

2/3/2020 15

http://www.youtube.com/watch?v=0oOC2FYNo1M
http://www.youtube.com/watch?v=0oOC2FYNo1M
http://www.youtube.com/watch?v=0oOC2FYNo1M

Other JavaScript Features

• Modules
o Ability to write code in separate files without name conflicts
o export names from a file to be used elsewhere (selective set of names)
o import names from a module (and give them a local name)
o This makes is possible to write more complex programs

• Multiple assignments
o Multiple variables, array elements, object fields

• Promises

Modules
• Separate files with separate name spaces
• File can export specific elements

o export function x { … }
o function x { …} ; export x;

• Other files can import a module of individual components
o import ‘module’
o import { name, name, … } from ‘module’

• Use script type module
o <script type=‘module’ src=‘name.mjs’></script>
o You can also package all the modules and the main file into one file (for production)

Promises
• Proxy for a value not necessarily known

o Pending: initial state
o Fulfilled: value known, execution successful
o Rejected: operation failed

• let first = new Promise((resolve,reject) => { function body}
o setTimeout(function() { resolve(“Success!”) },250); });
o Useful when the internal function is asynchronous
o Use instead of passing callbacks directly into function

• Allow chaining of callback functions
o promise.then(), promise.catch()
o let first = new Promise(
o let second = first.then((msg) => { console.log(“Show: “ + msg) });
o let third = second.then(…)
o let x = new Promise(…).

▪ .then(…).then(…).then(…)

Promises
• Traditional coding

o function work1(callback) { …. callback(result,error); }

• Traditional coding
o function work1(..) { … action(function(err,rslt) { work2(arg,err,rslt); }); }
o function work2(..) { … action(function(rslt) { work3(arg,rslt); }) }
o …

• Promise based coding
o new Promise()(work1).then(work2).catch(err2).then(work3)…
o function work1(resolve,reject) { … resolve(arg,rslt); else reject(err); }
o function work2(arg,rslt) { … return { a: arg,r : result, r1: val } }
o function work3(obj) { … }

Promises

• Not that useful for simple JavaScript
• However, will be very useful when coding the back end

(Node.JS)
• And will be useful for front end

o When the front end needs to talk to the back end and act when it gets a
reply

Simplified CSS: less
• Variables

o @width: 10px
o #header { width: @width; }

• Mixins
o .bordered { … }
o .post { .bordered(); … }

• Nesting
o #header { …; .navigation { … } }
o Used in place of #header .navigation { … }

• Expressions, maps, scoping, importing
• Requires running lessc to generate the actual css

o Also does syntax checking to catch CSS errors

Simplified CSS: scss / sass
• Variables

o $color : #ff00ff
• Mixins

o @mixin name() { … }
o .elt { @include name(); … }

• Nested Rules
o As in less
o &:xxx : qualified nesting

• Expressions, control flow, etc.
• Requires a preprocessor (scss)

o Essentially the same capabilities as less, different syntax

jQuery : A DOM Manipulation Library

• Last time we saw how to manipulate the DOM using
JavaScript
o getElementById, querySelector, querySelectorAll
o Setting classes, styles, text

▪ For individual elements
o Creating new HTML

• Not the easiest to use or the best syntax
• jQuery provides an alternative

Lecture 6: Dynamic Web Pages

jQuery DOM Access
• jQuery is a library to simplify DOM access/modification

o Plus make it easier to do standard manipulations

• $(“selector”)
o Selector is effectively a CSS selector
o What follows applies to ALL matching elements
o $(“.test”).hide(), $(“#Sum”).val(sum)
o $(“#sample”).html(“This is sample text”);
o $(“.error”).attr(“color”,”red”);

• Using jQuery is pretty standard
o And easier than using pure JavaScript

1/27/2020 24

Lecture 6: Dynamic Web Pages

jQuery DOM Traversal

1/27/2020 25

Lecture 6: Dynamic Web Pages

Using jQuery
• $(…).onChange(function() { … }) [onXXX for all events]
• $(“<div>….</div>”) (returns the corresponding DOM)
• $(…).html(“<….>”),
• $(…).text(“ string”)
• $(…).show(), $(…).hide()
• $(function() { … })
• $(…).animate({height:300},”slow”)

• <script type=‘text/javascript’ src=‘https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js’>
</script>

1/27/2020 26

jQuery Pros and Cons

• Pros
o Simpler to write (less typing)
o Can create complex html from a string easily
o Operations work on multiple elements by default

• Cons
o Need to include the jQuery script file (more to download)
o More difficult to debug
o Not a framework

HTML/JavaScript Coding Style
• The browser is very forgiving

o HTML is case insensitive
o New lines are optional
o Often don’t need to close elements or quote attribute values

• JavaScript can be written in various ways
o Variable names can be long or short
o Functions can be inline, use => notation, nested
o Objects can be declared in various ways

• But STYLE is important, especially in your final project

HTML, CSS, and JavaScript Style
• Your HTML, CSS, and JavaScript are going to change

o The system will evolve
o Bugs will be detected
o New features will be added

• Write your code to be READ by a human
o Not just to compile
o Other than yourself – should be clear to whoever is reading it
o Assume others in your final project will need to change your code

• Write your code with CHANGE in mind
o Make it easy to change
o Try to anticipate what might change
o Assume things will get more complex, not simpler

Consistency and Complexity
• HTML, JavaScript, CSS should be consistent

o Have a set of conventions and stick to it
o Naming conventions
o Formatting conventions
o Coding conventions

• Consistency across the project
o Teams should agree to and stick to a coding standard

• Avoid complexity
o Complex code, complex HTML, …

Checking Style: ESLINT
• Tools exist for checking coding style
• For JavaScript, use eslint
• ESLINT

o Can find (potential) problems with the JavaScript code
▪ Common programming errors (e.g. undefined variables)

o Can find violations of coding style

• ESLINT has a vast set of possible rules
o Things that can be checked
o A configuration file determines which you want checked

ESLINT Usage

• Example .eslintrc.js file
• Embedded in environments
• Example of running it

Next Time

• Requirements and Specifications
• Homework:

o PreLab 2: to familiarize yourself with JavaScript

