
Lecture 12: The Web Server

Lecture 12:

The Web Server
2/12/2020 1

Lecture 12: The Web Server

Specifications
• Describe what will be done

o Scenarios
o Lists of features to implement
o Note optional versus required (priority)

• Define the user experience
o Sketches of web pages (not final design)
o Basically list what should be there as a basis for the design

• Identify any interfaces to existing systems
o Servers, databases, login, etc.

• Outline of web site and pages
o List of what pages are needed

2/12/2020 2

Lecture 12: The Web Server

Specifications
• Detail what the application will do

o From the programmer’s point of view
o Can talk about other systems, components, modules
o More likely to talk about commands, inputs, outputs
o WHAT not HOW

• Define the inputs and outputs
o What information is needed
o What information is used
o Where does this information come from
o Where does this information go

• Specifications Document due 2/24

2/12/2020 3

Lecture 12: The Web Server

Specifications Are Not Designs
• WHAT not HOW
• Do not identify particular technologies to use

o Unless mandated by outside requirements
o Back ends, front ends, databases, …

• Do not determine how or where tasks are done
o Front end, back end, database
o Particular algorithms or processing (unless part of the requirements)

• Do not provide detailed web site designs
• Specifications will change as requirements change

2/12/2020 4

Lecture 12: The Web Server

Web Applications

2/12/2020 5

Web Browser

Front End

Web Server

Back End

Database

Server

HTTP

Mobile Platform

Front End

Lecture 12: The Web Server

The Web Server
• Sits on the host machine

o Listens for connections on a particular port (i.e. 80)
o Gets HTTP requests sent to that port (via a socket connection)
o Processes each request independently

▪ URL tells it how to process a request
▪ Sends a response back on the same socket

• Basic requests
o URL with a file specified
o Find the file on disk and return it

▪ Create an appropriate HTTP response (header)
▪ Followed by the data in the file

2/12/2020 6

Lecture 12: The Web Server

Web Server Game

• Volunteers (4) to act as clients making requests
o Can request a page of a given color

▪ ORANGE, YELLOW, PURPLE, BLUE
▪ RED (pink), GREEN, TAN, GRAY

• Volunteers (4) to act as HTTP connections
o Interface between clients and server

• Volunteer (1) to act as the web server
o Pages reside on file system

2/12/2020 7

Lecture 12: The Web Server

Web Server Game Improvements

• How can we speed this up?

2/12/2020 8

Lecture 12: The Web Server

Dynamic Requests
• Static requests are static

o Don’t work for web applications
o We need to get different data under different circumstances

▪ Based on information passed in with the URL

• Recall URLs have a query portion
o With name-value pairs (or POST data)
o Set up by HTML forms
o Can involve interaction with JavaScript

• Web server needs to return different results
o Based on the query / data

2/12/2020 9

Lecture 12: The Web Server

Modified Web Server Game

• Client asks for a color and a positive integer <= 100
o Web server has to return a sheet giving the square of the number
o Or ERROR (40x) if the input is illegal

2/12/2020 10

Lecture 12: The Web Server

Web Server Game Improvements

• How might we speed this up?

2/12/2020 11

Lecture 12: The Web Server

Context-Based Requests

• Most dynamic requests have a context
o Shopping cart
o Previous searches
o Previous inputs and pages
o User id

• The web server needs know the context
o Map users to contexts
o Use the context in creating the resultant output

2/12/2020 12

Lecture 12: The Web Server

Modified Web Server Game

• Client asks for a color and provides positive integer <=
100
o Server provides the sum of their previous numbers plus the new one

• Server provides the client with an ID
o Same ID for same client
o Client has to return the ID as part of their request

2/12/2020 13

Lecture 12: The Web Server

Modified Web Server Game

• How might we speed this up?

2/12/2020 14

Lecture 12: The Web Server

What the Web Server Does

• Given a HTTP Request
o Return a HTTP Response

• Given a URL
o Return the corresponding page

• Given a URL plus parameters / data
o Compute and return the resultant data
o Compute and return a HTML page

2/12/2020 15

Lecture 12: The Web Server

Web Server Issues
• Handling large numbers of clients

o Multiple threads, caching, multiple servers

• Managing context or state
• Generating HTML output containing computed values
• Doing the actual computations

o We need to describe these
o We need a program (and hence a programming language)

• Where are the computations done
o By the web server
o Externally

2/12/2020 16

Lecture 12: The Web Server

Web Servers
• General purpose servers

o Handle static pages; designed to scale
o Examples: Apache, NginX, Microsoft IIS

• Extensions to handle Computation
o Modules: PHP, Ruby, Python, Perl, FCGI, C#
o External Calls: CGI

• Special purpose servers
o TOMCAT: Java servlets
o NODE.JS: Event-based JavaScript
o Django, Flask: Python; Ruby on Rails: Ruby

• Embedded Servers
o Nanohttpd.java; micro-httpd for arduino

2/12/2020 17

Lecture 12: The Web Server

Server Organization

• Server needs to handle multiple requests at once
o Several alternative designs are possible for this

• Use threads
• Use multiple servers
• Use asynchronous I/O
• Combinations of these

2/12/2020 18

Lecture 12: The Web Server

CGI Programs
• First way that servers provided programmability
• URL: http://host/cgi-bin/cmd?args

o cgi-bin is a special directory on the web server
o cmd is the name of a normal executable in that directory

▪ Shell script, perl, php, python, java jar file, c/c++ binary, …
o args are named arguments passed to command

• The program ‘cmd’ is run on the web server
o Any program output is passed back to client
o Typical Use: Format a request and pass it on to server

o Problems: efficiency, security, safety
o Used in very limited applications

2/12/2020 19

Lecture 12: The Web Server

PHP

• PHP is a simple string-oriented scripting language
o Similar capabilities as Python, JavaScript
o Designed to make string processing easy

• Web server runs PHP internally
o As a module or plug-in
o Automatically when a page has a .php extension

2/12/2020 20

Lecture 12: The Web Server

PHP and HTML
• What does the web server normally generate

o HTML pages
o With lots of HTML (text)

• What’s different is based on query part of URL
o Some fraction of the page

• Most of the output is fixed text
o Header, navigation, footer
o Parts of the contents

• Why should we write code to output this
o In any language

2/12/2020 21

Lecture 12: The Web Server

PHP Pages

• Normal URLS where the file has a .php extension
o The plug in doesn’t run PHP directly on the file
o The page is actually a mixture of text and code

• HTML pages with embedded PHP code
o PHP module reads the page
o The HTML portion is passed on directly
o The PHP code is embedded in <?php … ?> constructs

▪ <? … ?>
o Where the code appears, it is run & replaced by its output

▪ PHP print or echo statements

• This concept, templating, is very useful
o Used to some extent in React, angular, vue, …

2/12/2020 22

Lecture 12: The Web Server

Servlets and JSP
• Why add a new language

o Programmers know Java
o Back end applications are often written in Java

• Use Java as the processing language
o Not ideal for string processing, but acceptable
o Multiple threads already accommodated

• Servlet
o Standard interface invoked directly by URL

▪ Path name = class name, parameters accessible

• Java Server Pages
o Pages with embedded Java <? … ?>

2/12/2020 23

Lecture 12: The Web Server

Java Servlets and JSP

• Handled by a separate web server
o TOMCAT is the most common
o Runs on a different port
o URL: host:8080/servlet/class?parms

• JSP handled by file extension
o URL: host:8080/page.jsp

2/12/2020 24

Lecture 12: The Web Server

ASP.Net

• Supported by Microsoft IIS
• Use C# (or C++) to write the back end
• Web pages use templating

o With embedded C#

2/12/2020 25

Lecture 12: The Web Server

Node.JS

• Why learn a new language (PHP)
o We already know JavaScript
o PHP is too slow; JavaScript is now compiled and fast
o It has most of what is needed

• What’s wrong with Java (C#)
o Too complex, not string-oriented
o Too much baggage

• Straight line code is inefficient
o Querying database, servers, file system all take time
o Multiple threads complicate processing
o Difficult to load balance with diverse threads

2/12/2020 26

Lecture 12: The Web Server

Node.JS
• JavaScript Web Server

o Separate server (like TOMCAT for Java)
▪ Each application has its own server

o App back end is written in JavaScript

• Event-Based
o Computation is done in small pieces

▪ Complex interactions are done asynchronously
o JavaScript code is associated with events

▪ The code is executed when the event occurs
▪ Code can initiate asynchronous computations with later events
▪ Code supplies a continuation invoked when action completes

2/12/2020 27

Lecture 12: The Web Server

Web Applications

2/12/2020 28

Web Browser

Front End

Web Server

Back End

Database

Server

HTTP

Mobile Platform

Front End

Lecture 12: The Web Server

Databases

• Most web applications need to store information
o Much of what they do is information based
o Shopping site as an example
o The security, integrity, … of the information is important

• The server code talks to a database system
o All languages have code to make this relatively easy

• Database operations
o Setting up the database
o Adding and removing information from the database
o Getting (querying) information from the database

2/12/2020 29

Lecture 12: The Web Server

Frameworks

• All this sounds complex to set up and operate
o A lot of the work is common and straightforward

▪ Communications, setting up pages, database access, …
o It can be simplified by extracting these

▪ Leaving only the code specific to the particular application

• Frameworks are attempts to do this
o Provide common code to plug in the application
o Provide all the glue code; simplify database access
o Ruby on Rails, Django, Flask, GWT
o Express (and other plug-ins) for Node.JS

2/12/2020 30

Lecture 12: The Web Server

Next Time

• Node.JS
• Homework:

o Pre-Lab 4

2/12/2020 31

Lecture 12: The Web Server

Server Organization

• Internal processing
o Queue of tasks to be done
o Thread pool to handle multiple requests
o Internal requests can be queued if necessary

• Handling initial requests
o Single thread to read web socket

• Multithreaded versus Single threaded processing
o Using non-blocking (asynchronous) I/O

2/12/2020 32

Lecture 12: The Web Server

Handling Complex Applications

• The web server
o Can handle PHP, Servlets, etc.
o But these have limited capabilities
o These run in limited environments
o Don’t want to overwhelm the server

▪ The server has other responsibilities

• What if your application is more complex
o You need to provide complex services (e.g. machine learning, data mining,

search)
o Then you might want to have your own server

2/12/2020 33

Lecture 12: The Web Server

User Server Organization
• Based on a client-server model
• Client: app code in the web server

o Each request is its own client
o Can be done via PHP or other server side code

• Socket-based communication
o Server runs on a host and accepts connections on a port
o Client connects to that host-port

▪ Sends command/request
▪ Reads response, processes it to HTML/JSON
▪ Returns it to the browser

• Server: self-standing system

2/12/2020 34

Lecture 12: The Web Server

PHP Language

• Simple interpreted (scripting) language
• Untyped

o Basic data types: string, int (long), float (double)
o Complex data types: associative arrays, classes

• Lots of built-in functions
• Good string support

o “hello $var, this is a ${expr}. “

• Good documentation (esp. for libraries)

2/12/2020 35

Lecture 12: The Web Server

Node.JS Event Example
• Request comes in

o JavaScript code creates database query based on parameters
o Starts query and registers continuation

• When query completes (done asynchronously)
o Continuation is invoked. Template file is opened and a new continuation is

provided

• When file is ready to read (done asynchronously))
o A stream from the file to the client is established
o The file is output asynchronously

• We’ll get into this in detail next week

2/12/2020 36

Lecture 12: The Web Server

What Services Did You Guess
• What does a back end have to do for a web

application?
o Storage (database)
o Accounts (login, authentication)
o Computation (search, processing)
o Security (transactions, secure processing)

2/12/2020 37

