C$S1320

Creating Modern Web and
Mobile Applications $

Lecture 14

CS132 Lecture 13: Node.JS

Events in Node.JS
>

V8

 Recall our server game
o Multiple people help speed up the service
o Multitasking can speed up the service

« How to achieve multitasking?

o Multiple threads
« Thisis what apache, nginx, tomcat, ... do

» Threaded coding can be very complex
= JavaScript does not support threads
o Multiple servers
= Need to ensure same user gets the same server

= Supported by nginx directly
= Supported by various front ends for apache

= Supported by a node.js plug-in
o Multitask without threads

2/24/2020 2

CS132 Lecture 13: Node.JS

Node.js server with worker pool for sorting

Eve nts i n N O d e OJ S Internets Server

Node

data process
\ difficult task sorter sorter sorter sorter

/

* What does the web server spend its time doin

o Listening for requests | |
o Reading/writing from the network and files otk \
o Accessing a database or outside server g \ — -
o Not much time is spent doing computation nwmm‘/ — —
« These tasks run elsewhere
o Done in the operating system ’ / |
difficult task

o Done in database system or application server done
o Done in background threads in node.js (not javascript)
o The web server for an app proper spends its time waiting

« Rather than waiting, use non-blocking I/0
Start the I/0O and let someone else run
When I/0O finishes, the server is notified and it processes the result

Multiple I/0 operations can be pending at once
Other operations can be treated as I/0O

o O O O

2/24/2020 3

CS132 Lecture 13: Node.JS

Events and Event Handlers

* Recall how JavaScript works in the browser
o JavaScript registers for events (onXXX="function()’)
o When something happens, JavaScript is invoked to change the DOM

o The browser continues execution when JS returns
= And the change is effected

* Node.JS takes this approach

o Start an operation via a function call
« Operation defines a set of events tagged by name
L, e

= Register callbacks (functions) for events of interest

= Return control to Node.JS
= This is when the operation actually begins

o Node.JS will run the operation in background
= Invoke your callback functions as needed

2/24/2020 4

9
async /O (multi-threaded)

o 0 POSIX threads doin
o

CS132 Lecture 13: Node.JS

Functions and Continuations

f -] [

. . . v 5
« Callbacks are functions in JavaScript g q'—-,\:k———
o Arguments determined by the event e —D ________

« Functions in JavaScript can be defined in-line
db.query(”..."[...],function (e1,d1) { hQ2(req,res,e1,d1); });
db.query(”..."[...], (e1,d1) => { hQ2(req,res,e1,d1); });

o When a function is defined this way
« |t can access variables/parameters of the outer function

o This is effectively a continuation
= |l.e.the inner function defines how execution should continue
« When the specific event occurs

« Coding practice
o Do as multiple functions (very simple in-line function calling next)
o Or use Promises with functions defined separately (not nested)

2/24/2020 5

CS132 Lecture 13: Node.JS

Node.JS Modules

« Synchronous
o URL decoding

o File path manipulations

o Assertions, debugging, read-eval-print loop

o OS queries o 00 ey
DAY A NEW WEB
_— PR 1 okay, IT 15
o Uti | Iities TUE BTG OWE! 2T’
GOING TO CHANGE
EVERYTHING!

e Plus external module

Not Invented Here™ @ Bill Barnes & Paul Southworth NotInventedHere.com

2/24/2020 6

CS132 Lecture 13: Node.JS

Node.JS Modules

 Asynchronous (event-based)
o File I/0
o External processes and code (C/C++)
o HTTP, HTTPS Browser workers
o Crypto, TLS/SSL '
o Database access (SOQL/MANGO) CLI workers
o Timers
o Web sockets

s g MongoDB

dnode

e Plus external modules

2/24/2020 7

CS132 Lecture 13: Node.JS

Node.JS Weaknesses

Documentation

Coding errors

Error Recovery
Scalability

2/24/2020

WeponShift\pk>node sorver

podule. js:348
throv err;
Cannet fFind module
Function.Module. _resolveFilename (module.js:338:15)
Function.Module. _load (nodule.js:280:25)
Module.require {module.js:364:17)
:380:17)
CE: \OpenShift\pk \zerver.

roquire (module
Object . <anonyno
Module. _conpile {(module.js:
Object . Module._soxtensie
Module.load <{medule.jo:356:32)
Function.Module. _load (nodule.j
Function.Module.runMain (nodule

(module.jsi474:18D

fFe\pk?>

CS132 Lecture 13: Node.JS

Node.JS Error Recovery

Node.JS (your server) will halt:
o Atstart up if the JavaScript doesn't compile
o Atrun time if there are any run time errors

* Is this the desired behavior? R

N EXCeptiOnS’ try . Catch g% Eggézggiigggifree.in/!ealtimefastindex.ashx?listid=22992273iac
o Doesn't work that well with asynchronous calls = ’“°°:§:;tf:§§§f§:;$:)‘§’ ¢
o What do you do with an exception? >§; l;m;e::,(.::io: (romste, e, exm) ¢
o Promise.catch 83|} - '

%0 b
31 </script>

 Domains - [FURN
o Provide a more general mechanism
o Still require considerable coding

« Add error checking code at each stage
« Try to anticipate errors as much as possible
* Express has some error handling modules

2/24/2020 9

CS132 Lecture 13: Node.JS Server

(Multi-Core)

Scaling Node.JS

« Requires running multiple Node.JS serverliz=_
o On the same machine (multiple cores)

o On separate machines (cluster)
« And sending requests based on incoming IP address
« Can be done using NginX or other front end

« Can be done using Node.JS

o There's a module for that

2/24/2020 10

CS132 Lecture 14: Web Application Architectures

Web Applications

Transparency

 Are distributed systems

o Some work is done in the front end Ideal
Distributed

o Some work is done in the back end Systéms
o Some work is done in servers or databases

- Different web applications allocate the work differently
o Server-side heavy: banner, blogs, ...
o Client-side heavy: gmail, google docs

« What should be done where depends on lots of factors

o Responsiveness; Performance

o Access to and security of code and data

o Amount of communications needed

o Where the data is actually needed; what is done with the data

2/24/2020

’ Resillenceto
Failure

CS132 Lecture 14: Web Application Architectures

Server-Side Application

i
(v

Rosponsas from Web Server
(HTML, CSS Data, JavaScrigt,
images, Flash Content)

Company Website Visitor /

-

Database Servers | Manages database

2/24/2020 12

4

. the scripting engine
CS132 Lecture 14: Web Application Architectures processes the request | <2 Svariable_ data 7
1pnhln«’1lm

Server-Side Application | -v-nmm 5
e The default browser-server model o s

LA You vigit the website
byt Ty

o Browser sends a HTTP request

o The HTTP response is used to replace the current page

* Various technologies can support this model

o Using PHP, JSP, Servlets to generate new HTML page
= Based on properties passed in the URL query

o Using Node.JS with a templating engine

o Front-end JavaScript only used for interactive features (i.e. pull downs,
validation)

2/24/2020

CS132 Lecture 14: Web Application Architectures

Server-Side Pros/Cons

« Templating lets you write HTML directly for the most part

o Easier to change templates than actual code

« Don't have to send lots of code over the web
o The code can be kept private

 Server code is generally synchronous, straight-forward
« Data isn't directly accessible to users
» Not as interactive, responsive

* Requires more compute power on server
o Less on the clients

« Works naturally with assistive devices

2/24/2020

CS132 Lecture 14: Web Application Architectures

Client Side Application

Select an
item to buy

Create running subtotal

NGULARIJS

. Google
Get credit card i 3
and shipping info

Client
Using
Web Browser

Error check data

React JS

Email order to administrator

Web

Server

~ Hardware/
Software

= Running CGI _
= Script. Vue-ls

2/24/2020

CS132 Lecture 14: Web Application Architectures

Client-Side Application

« Most of the work is done on the page
o Using JavaScript
o As with Vue, React, Angular, ...

 Front end still needs to get/send informat
o To the server, database, back end, application
o To actually get work done
o To get additional information
o To ensure information is permanent
o To save status in case of refresh, return to page

« Page update done in JavaScript
o Based on information retrieved
o JavaScript handles formatting, updating, etc. the page

2/24/2020 16

CS132 Lecture 14: Web Application Architectures

Client-Side Pros and Cons

JavaScript isn't the nicest language
o Especially if you have to write lots of code
o Buts its getting better (ES6 Modules, templated strings)

« JavaScript isn't the most efficient language

Should You Design A
Single Page Site?

o Today's browser provide efficient implementations Pros And Cons
o Large operations can tie up the browser
* Responses are asynchronous disadvantages ()

advantages !
——

« Might need to send large amount of data
o To cover all possible interactions
o But data can be sent on demand

* Your base code is public; base data is available
« Normal navigation can be difficult

* Interface can be highly interactive, responsive
« Working with assistive devices & internationalization can be tricky

2/24/2020 17

CS132 Lecture 14: Web Application Architectures
Actual Applications 8 Bl
S
79

« Mixture of server-side and client-s g

« Applications are composed of tas

CLIENT SIDE SERVER SIDE
o Some tasks are done server-side

o Some tasks are done client-side

« When developing an application

o Determine the set of tasks (based on specifications)

o Determine where/how each task will be done

2/24/2020

CS132 Lecture 14: Web Application Architectures

CDQuery

Find Your CDs
CD Search: I
Find Your CDs
Title CD#1 title and major artist
* Track 2
Artist CD#2 title and major artist
* Track 2
Track i
CD#3 title and major artist Flnd Your CDs
*Track 1
ARTIST
Description
CD#4 title and major artist
—_— TRACK Title
Artist
Length
Description
TRACK Title
Artist
Length
Description
2/24/2020

19

CS132 Lecture 14: Web Application Architectures

Client-Side Implementation

* You already have most of the tools needed for this

FRONT-END DEVELOPMENT Upwork-

o JavaScript to modify the DOM

o React, Vue, Angular to make this easier

o Data to display has to come from somewhere

o Results and state need to be stored somewhere

o Actions need to be taken

How to communicate with the back end
o Without replacing the page

2/24/2020 20

CS132 Lecture 14: Web Application Architectures

AJAX

« Asynchronous JavaScript And XML

o JavaScript is used to send an XML request to the server
= Using a particular URL
» Expecting XML output as a response

o When the response comes back, JavaScript runs again
= Interprets that output
= Changes the DOM to update the page

« JSON is often used today rather than XML

« JavaScript libraries provide support for this AI‘JAX

o Setting up request; handling response Asynchronous Javascript And XML
o XML, JSON encoding and decoding

2/24/2020 21

CS132 Lecture 14: Web Application Architectures

XML

2/24/2020

=2l versior="1.0" encoding="UUTF-&'?=
=IDOCTYPE ARTICLES SYSTEM

"DAProjectaClientst<MLIContentsiTermparticleligt. dtd'=

=k stylesheet ty pe="textixs!"
href="Dxrmitohtr xsi" 7=
=ARTICLES=
<ARTICLE=
<ARTICLEDATA=
=TITLE=XML Derry dified=/M TLE=
=AUTHOR=Jaidev=/AUTHOR =
<IARTICLEDATA=
=/ARTICLE=
=ARTICLE=
<ARTICLEDATA=
=TITLE=XSLT Dermydified=iTITLE=
=AUTHOR=X S Cel Tea <’AUTHOR =
=/ARTICLEDATA=
</ARTICLE=
<ARTICLE=
=ARTICLEDATA=
=TITLE=C# Dermy dified=/TITLE=
<AUTHOR=Aleksey N</AUTHOR >
</ARTICLEDAT A=
<ARTICLE=
<ARTICLES:=

<?xml version="1.0"7>
<quiz>
<qanda seg="1">
<question>
Who was the forty-second
president of the U.S.A.?
</question>
<answer>
William Jefferson Clinton
<fanswer>
</qanda>
<!-- Note: We need to add
more questions later.-->
</quiz>

XML

22

CS132 Lecture 14: Web Application Architectures
{

"Rail Booking™: {

"reservation": {
"ref_no": 12345€7,) / ‘\
"time_stamp": "2016-06-24T14:26:59.125", JavaScript

"confirmed": true | JSON stringify | | eval |
b
"train™: { .
Ajax POST Ajax GET
"date": "07/04/201&",
"time": "09:30",
"from": "New York", | json_decode I | json_encode |

"te": "Chicago”,

(o)
"seat™: "57B" PHP \ / \C
\'o
b R\
90

"passenger”: {
"name": "John Smith"
be
"price™: 1234.25,
"comments™: ["Lunch & dinner incl.", "\"Have a nice day'\""]

2/24/2020 23

CS132 Lecture 14: Web Application Architectures

XMLHttpRequest (Using EcmaScript 6)

Syntax

data = { name: “a name”, email: an@email.com };
let pO = fetch(https://mysite.com/api/query, {
method: "POST",
headers: { “Content-Type": “application/json” },
body: JSON.stringify(data) })
then((response) => response.json())
then((data) => { handleData(data); });
.catch((error) => { handleError(data); });

« Request gets sent when JavaScript returns
o Fetch returns a promise

Other parameters and events are available
jQuery has a $.ajax(...) method that is similar

2/24/2020 24

mailto:an@email.com
https://mysite.com/api/query

CS132 Lecture 14: Web Application Architectures

RESTful APIs

REST API
Design

GET Nasks - display all tasks

POST /tasks - create a new task
GET fasksl/{id} - display a task by ID
PUT ltasks/{id} - update a task by ID
DELETE ftasks/{id} - delete a task by ID

]
API =
I

e/

Client

2/24/2020

|
[
DB data

CS132 Lecture 14: Web Application Architectures

RESTful APIs

Use HTTP methods explicitly
o POST, GET, PUT, DELETE, ...

Are stateless

o Each request includes all the necessary information

Expose directory structure-like URLs
o Use the URL to encode the operation and the data

Transfer XML or JSON

2/24/2020

GEEK FOR DUMMIES

AND WHEN YOU WANNA SEE THE INVOICE
WITH THE ID 42 JUST TYPE
/hitchhiker.lifeofbrian:8080/services/invoice?id=42
INTO THE ADDRESS BAR!
ISN'T THAT UBERCOOL 7

[2’\» zi
: w -\ *i

CHAPTER 1: BE AWARE THAT NOT EVERYBODY SHARES
YOUR ENTHUSIASM ABOUT RESTFUL APIs

26

Servlet context path specific

CS132 Lecture 14: Web Application Architectures . '|/ bader

° Ihttp://www.acme.com/oms/order/ENT0035432
URL Encodings — =

host and port The type of resource
(i.e. noun)

« Suppose we create a chat application
o POST /chats with { text: “..." user: “..." title: “..." } =>id 01
o GET /chats/01
o PUT /chats/01 with { text: “...", user: “ ..." }
o DELETE /chats/01

¢ Ca n a I SO e n CO d e CO m m a n d S "hnp://].ncalho:r.:80&0/1R£SItu1Heb5=zviceExample onversionServicefFeetTolnch/2";
o GET /command/subcommand/... Displjm) :::Ie’;g -
o POST /chats/01/delete o el ok
« Can have nested ids
o GET /command/id/what/id/...
27

2/24/2020

CS132 Lecture 14: Web Application Architectures

Front End vs Back End Control

« AJAX implies the front end pulls data from the back end
o Or posts data as convenient
« What if the back end should be in control

o Notifications when something unusual happens

o Continuous information feeds

« One way of handling this is POLLING

o Front end continually asks the back end “Is anything happening”

o Not particularly efficient
« There is a better way
e

Polling interval

2/24/2020

Web Browser/App Open WebSocket Connection Server

CS132 Lecture 14: Web Application Architectures

Map Updates <& Spatial Data f} Asset Moves
Web Sockets |

Map Updates | g Seatidl Data f} Asset Moves
« AJAX model is client-initiated (pull model) | ., . | A st

* Some applications are server-initiated
o Only want notification when things change

« Web sockets allow this approach
o Establish a 2-way connection between client and server

o Send messages from client to server or server to client
o Messages result in events that trigger code execution

¢ Handling messages
o On-events in the client
o Node.JS events in the server (Socket.|O)
o Similar support for PHP, Servlets, ...

Close WebSocket Connection

<HEML>

Webékets

2/24/2020

CS132 Lecture 14: Web Application Architectures

Socket.lO Server Code

var socket = require('socket.io’)

function start() {

var server = app.listen(port);

var sio = socket.listen(server);
sio.socket.on(‘connection’,
socketConnect);

2/24/2020

function socketConnect(s) {
s.on(‘usercmd?’,
function(data) { uc1(s,data); });

s.on(‘'usercmd?’,
function(data){ ...});

s.on(‘disconnect,

function(socket){ ... });

}
function uc1(s,data) {

s.emit('emd’{ result: 'xxx' });

30

CS132 Lecture 14: Web Application Architectures

Socket.lO Client Code

<script src="/socket.io/socket.io.js" ></script>
<script>
var socket = io.connect('http://localhost');

socket.on('news', function (data) {
console.log(data);
socket.emit('my other event', { my: 'data’' }); });

</script>

2/24/2020

31

