
Lecture 14

Web Application Architectures I

CS132 Lecture 13: Node.JS

Events in Node.JS
• Recall our server game

o Multiple people help speed up the service
o Multitasking can speed up the service

• How to achieve multitasking?
o Multiple threads

▪ This is what apache, nginx, tomcat, … do
▪ Threaded coding can be very complex
▪ JavaScript does not support threads

o Multiple servers
▪ Need to ensure same user gets the same server
▪ Supported by nginx directly
▪ Supported by various front ends for apache
▪ Supported by a node.js plug-in

o Multitask without threads

2/24/2020 2

CS132 Lecture 13: Node.JS

Events in Node.JS
• What does the web server spend its time doing?

o Listening for requests
o Reading/writing from the network and files
o Accessing a database or outside server
o Not much time is spent doing computation

• These tasks run elsewhere
o Done in the operating system
o Done in database system or application server
o Done in background threads in node.js (not javascript)
o The web server for an app proper spends its time waiting

• Rather than waiting, use non-blocking I/O
o Start the I/O and let someone else run
o When I/O finishes, the server is notified and it processes the result
o Multiple I/O operations can be pending at once
o Other operations can be treated as I/O

2/24/2020 3

CS132 Lecture 13: Node.JS

Events and Event Handlers
• Recall how JavaScript works in the browser

o JavaScript registers for events (onXXX=‘function()’)
o When something happens, JavaScript is invoked to change the DOM
o The browser continues execution when JS returns

▪ And the change is effected
• Node.JS takes this approach

o Start an operation via a function call
▪ Operation defines a set of events tagged by name
▪ Register callbacks (functions) for events of interest
▪ Return control to Node.JS
▪ This is when the operation actually begins

o Node.JS will run the operation in background
▪ Invoke your callback functions as needed

2/24/2020 4

CS132 Lecture 13: Node.JS

Functions and Continuations
• Callbacks are functions in JavaScript

o Arguments determined by the event

• Functions in JavaScript can be defined in-line
db.query(“…”,[…],function (e1,d1) { hQ2(req,res,e1,d1); });
db.query(“…”,[…], (e1,d1) => { hQ2(req,res,e1,d1); });

o When a function is defined this way
▪ It can access variables/parameters of the outer function

o This is effectively a continuation
▪ I.e. the inner function defines how execution should continue
▪ When the specific event occurs

• Coding practice
o Do as multiple functions (very simple in-line function calling next)
o Or use Promises with functions defined separately (not nested)

2/24/2020 5

CS132 Lecture 13: Node.JS

Node.JS Modules

• Synchronous
o URL decoding
o File path manipulations
o Assertions, debugging, read-eval-print loop
o OS queries
o Utilities

• Plus external modules

2/24/2020 6

CS132 Lecture 13: Node.JS

Node.JS Modules

• Asynchronous (event-based)
o File I/O
o External processes and code (C/C++)
o HTTP, HTTPS
o Crypto, TLS/SSL
o Database access (SQL/MANGO)
o Timers
o Web sockets

• Plus external modules

2/24/2020 7

CS132 Lecture 13: Node.JS

Node.JS Weaknesses

• Documentation
• Coding errors
• Error Recovery
• Scalability

2/24/2020 8

CS132 Lecture 13: Node.JS

Node.JS Error Recovery
• Node.JS (your server) will halt:

o At start up if the JavaScript doesn’t compile
o At run time if there are any run time errors

• Is this the desired behavior?
• Exceptions, try … catch

o Doesn’t work that well with asynchronous calls
o What do you do with an exception?
o Promise.catch

• Domains
o Provide a more general mechanism
o Still require considerable coding

• Add error checking code at each stage
• Try to anticipate errors as much as possible
• Express has some error handling modules

2/24/2020 9

CS132 Lecture 13: Node.JS

Scaling Node.JS

• Requires running multiple Node.JS servers
o On the same machine (multiple cores)
o On separate machines (cluster)

• And sending requests based on incoming IP address
• Can be done using NginX or other front end
• Can be done using Node.JS

o There’s a module for that

2/24/2020 10

CS132 Lecture 14: Web Application Architectures

Web Applications
• Are distributed systems

o Some work is done in the front end
o Some work is done in the back end
o Some work is done in servers or databases

• Different web applications allocate the work differently
o Server-side heavy: banner, blogs, …
o Client-side heavy: gmail, google docs

• What should be done where depends on lots of factors
o Responsiveness; Performance
o Access to and security of code and data
o Amount of communications needed
o Where the data is actually needed; what is done with the data

2/24/2020 11

CS132 Lecture 14: Web Application Architectures

Server-Side Application

2/24/2020 12

CS132 Lecture 14: Web Application Architectures

Server-Side Application
• The default browser-server model

o Browser sends a HTTP request
o The HTTP response is used to replace the current page

• Various technologies can support this model
o Using PHP, JSP, Servlets to generate new HTML page

▪ Based on properties passed in the URL query
o Using Node.JS with a templating engine
o Front-end JavaScript only used for interactive features (i.e. pull downs,

validation)

2/24/2020 13

CS132 Lecture 14: Web Application Architectures

Server-Side Pros/Cons
• Templating lets you write HTML directly for the most part

o Easier to change templates than actual code

• Don’t have to send lots of code over the web
o The code can be kept private

• Server code is generally synchronous, straight-forward
• Data isn’t directly accessible to users
• Not as interactive, responsive
• Requires more compute power on server

o Less on the clients

• Works naturally with assistive devices

2/24/2020 14

CS132 Lecture 14: Web Application Architectures

Client Side Application

2/24/2020 15

CS132 Lecture 14: Web Application Architectures

Client-Side Application
• Most of the work is done on the page

o Using JavaScript
o As with Vue, React, Angular, …

• Front end still needs to get/send information
o To the server, database, back end, application
o To actually get work done
o To get additional information
o To ensure information is permanent
o To save status in case of refresh, return to page

• Page update done in JavaScript
o Based on information retrieved
o JavaScript handles formatting, updating, etc. the page

2/24/2020 16

CS132 Lecture 14: Web Application Architectures

Client-Side Pros and Cons
• JavaScript isn’t the nicest language

o Especially if you have to write lots of code
o Buts its getting better (ES6 Modules, templated strings)

• JavaScript isn’t the most efficient language
o Today’s browser provide efficient implementations
o Large operations can tie up the browser

• Responses are asynchronous
• Might need to send large amount of data

o To cover all possible interactions
o But data can be sent on demand

• Your base code is public; base data is available
• Normal navigation can be difficult
• Interface can be highly interactive, responsive
• Working with assistive devices & internationalization can be tricky

2/24/2020 17

CS132 Lecture 14: Web Application Architectures

Actual Applications

• Mixture of server-side and client-side
• Applications are composed of tasks

o Some tasks are done server-side
o Some tasks are done client-side

• When developing an application
o Determine the set of tasks (based on specifications)
o Determine where/how each task will be done

2/24/2020 18

CS132 Lecture 14: Web Application Architectures

CDQuery

2/24/2020 19

CS132 Lecture 14: Web Application Architectures

Client-Side Implementation
• You already have most of the tools needed for this

o JavaScript to modify the DOM
o React, Vue, Angular to make this easier

• Client-Side code still needs a back end
o Data to display has to come from somewhere
o Results and state need to be stored somewhere
o Actions need to be taken

• How to communicate with the back end
o Without replacing the page

2/24/2020 20

CS132 Lecture 14: Web Application Architectures

AJAX
• Asynchronous JavaScript And XML

o JavaScript is used to send an XML request to the server
▪ Using a particular URL
▪ Expecting XML output as a response

o When the response comes back, JavaScript runs again
▪ Interprets that output
▪ Changes the DOM to update the page

• JSON is often used today rather than XML
• JavaScript libraries provide support for this

o Setting up request; handling response
o XML, JSON encoding and decoding

2/24/2020 21

CS132 Lecture 14: Web Application Architectures

XML

2/24/2020 22

CS132 Lecture 14: Web Application Architectures

JSON

2/24/2020 23

CS132 Lecture 14: Web Application Architectures

XMLHttpRequest (Using EcmaScript 6)
• Syntax

data = { name: “a name”, email: an@email.com };
let p0 = fetch(https://mysite.com/api/query, {

method: “POST”,
headers: { “Content-Type”: “application/json” },
body: JSON.stringify(data) })

 .then((response) => response.json())
 .then((data) => { handleData(data); });
 .catch((error) => { handleError(data); });

• Request gets sent when JavaScript returns
o Fetch returns a promise

• Other parameters and events are available
• jQuery has a $.ajax(…) method that is similar

2/24/2020 24

mailto:an@email.com
https://mysite.com/api/query

CS132 Lecture 14: Web Application Architectures

RESTful APIs

2/24/2020 25

CS132 Lecture 14: Web Application Architectures

RESTful APIs

• Use HTTP methods explicitly
o POST, GET, PUT, DELETE, …

• Are stateless
o Each request includes all the necessary information

• Expose directory structure-like URLs
o Use the URL to encode the operation and the data

• Transfer XML or JSON

2/24/2020 26

CS132 Lecture 14: Web Application Architectures

URL Encodings
• Suppose we create a chat application

o POST /chats with { text: “…”, user: “…”, title: “…” } => id 01
o GET /chats/01
o PUT /chats/01 with { text: “…”, user: “ …” }
o DELETE /chats/01

• Can also encode commands
o GET /command/subcommand/…
o POST /chats/01/delete

• Can have nested ids
o GET /command/id/what/id/…

2/24/2020 27

CS132 Lecture 14: Web Application Architectures

Front End vs Back End Control

• AJAX implies the front end pulls data from the back end
o Or posts data as convenient

• What if the back end should be in control
o Notifications when something unusual happens
o Continuous information feeds

• One way of handling this is POLLING
o Front end continually asks the back end “Is anything happening”
o Not particularly efficient

• There is a better way

2/24/2020 28

CS132 Lecture 14: Web Application Architectures

Web Sockets
• AJAX model is client-initiated (pull model)
• Some applications are server-initiated

o Only want notification when things change

• Web sockets allow this approach
o Establish a 2-way connection between client and server
o Send messages from client to server or server to client
o Messages result in events that trigger code execution

• Handling messages
o On-events in the client
o Node.JS events in the server (Socket.IO)
o Similar support for PHP, Servlets, …

2/24/2020 29

CS132 Lecture 14: Web Application Architectures

var socket = require(‘socket.io’)

function start() {
… app.get(…) …
var server = app.listen(port);
var sio = socket.listen(server);
sio.socket.on(‘connection’,
socketConnect);

}

function socketConnect(s) {
s.on(‘usercmd1’,

function(data) { uc1(s,data); });
s.on(‘usercmd2’,

function(data) { …});

s.on(‘disconnect’,
function(socket) { … });

}
function uc1(s,data) {

s.emit(‘cmd’,{ result: ‘xxx’ });
}

Socket.IO Server Code

2/24/2020 30

CS132 Lecture 14: Web Application Architectures

Socket.IO Client Code
<script src="/socket.io/socket.io.js"></script>
<script>
 var socket = io.connect('http://localhost');
 socket.on('news', function (data) {

console.log(data);
socket.emit('my other event', { my: 'data' }); });

 </script>

2/24/2020 31

