C$S1320

Creating Modern Web and
Mobile Applications $

Lecture 15

CS132 Lecture 15: Web Application Architectures Il

CDQuery User Library

« Suppose CDQuery were modified to know the user’s

current collection
o Understand what CDs they owned

o Use this information in querying and display

« Then the application would need to know who the user

Wwas
o Why is this problematic?

2/24/2020 2

CS132 Lecture 15: Web Application Architectures Il

Web Applications and HTTP

« The web application assumes it knows the user
o One request follows another
o Common shopping cart for the user JSF Page
o Look up information based on the user

Request + —»
Response —

Business |[product]

Service
Request + —»
Response —

I ano
3l El i
—
et 2| | =] 0
<+— Response —

Browser Web Application

Server
2
2
]

o Server needs to know who the user is
= Even if they haven't logged in

« HTTP is stateless

o Each request is independent of previous requests
o Requests come on different sockets at different times

« This disparity is addressed using sessions

2/24/2020 3

CS132 Lecture 15: Web Application Architectures Il

g

What is a Session

« A mechanism for maintaining state

o For the particular user and the particular web app
o Within the server

o Somewhat independent of the browser

« The session contains information about the current state

o Information about the particular user
o Information for the particular application

o Information for this particular use of the application

2/24/2020 4

CS132 Lecture 15: Web Application Architectures Il

Sessions
* Represent a connected series of user actions

o Example: log-in, select-items to purchase, check-out, log-
out

o Example: select source/destination cities, dates; request
schedules; select flights; login; purchase tickets

* Needs to have a fixed start
o Might have a fixed end (log-out request)

o More likely, time-out if unused; exit when browser closes

2/24/2020 5

CS132 Lecture 15: Web Application Architectures Il

Session Properties

« What information needs to be kept with the s

4 General I Startup | Advanced | Firewall |

Profile Name: [Bert |

o Depends on the application

PY S a m p I e i nfo rm ati O n & Host Name/Address: |bert.cs.uic.edu Delete l
] Host Type: IAulomatic detect _vJ
o Userid if one exists UserD: [I~ Anorymous
0 H OSt, Iast_u Sed -tl me Password: | I Save Pwd
. Account: |
o Shopping cart ot |
= Associated with user id?

0K I Cancel Apply Help

= How to handle log in afterwards

o Input values for forms (to be (re)filled automatically)
o Previous searches or history

Site customization values

2/24/2020 6

(@)

Add New TO DO Item:

CS132 Lecture 15: Web Application Architectures Il

go shopping u

pick up kids L]
°) book flight (]
Tracking Sessions =TT

II'I'Ml_!i: T0 DO Application
Using Local Storage
 Should the CLIENT track the session

o If you don't browse off the page, these can be kept in html
« Hidden fields, JavaScript variables, separate DOM tree, etc.

o Butif you replace the page, they disappear

o Also, if there are multiple pages up, what is used

« HTML 5 Local storage
o Key-value pairs for the same domain
o Settable and gettable from JavaScript

o Works if the information is local & HTMLS5 is available
= And users always use the same browser and same machine (without incognito mode)

2/24/2020 7

CS132 Lecture 15: Web Application Architectures Il

Password=dayign

Login successful? SESSION_ID
ion id Sessionid

Tracking Sessions

e Should the SERVER track the session

o Maintain as part of state for user

o But need to send/get it from the browser

= Server needs to tell the browser the state for new pages

= Browser needs to tell the server the state for all requests

o What happens if there are multiple pages displayed
o What happens with back and forward buttons

e Client and Server both track the session

o Typically using cookies

2/24/2020 8

CS132 Lecture 15: Web Application Architectures Il

Tracking Sessions

HTTP HTTP
Client Server
Login
P — POST
paseworgoa
“davidn Login successful? ESSION_ID
1. create session id Sessionid
2. return session id in cookie Username
3. store session id in database createDate
expireDate
lastAccessDate

-

Set-Cookie: SESSIONID=66C530ACAF44D1605588619ECBOC737C

HTTP is Stateless

Cookie: SESSIONID=66C530ACAF44D1605488619ECBOC737C

m—

Lookup Session ID
1. session match a username?
2. session still valid?

Content for ‘david’

-
:

CS132 Lecture 15: Web Application Architectures Il

Cookies

« Cookies are a general mechanism

Cookies

Search: Iocalhosﬂ

The following cookies match your search:

Site Cookie Name

_Ilocalhost JSESSIONID
Name: JSESSIONID
Content: FAD72A19D9EBA313D2D5977BDOF94AF7
Host: localhost
Path: /helloserviet
Send For: Any type of connection
Expires: At end of session
[Remove Al Cookies .

o For conveying information between browser and server

o Name-value pairs associated with a particular URL

= Can have multiple pairs

o Sent automatically by the browser as part of the HTTP header

= With any request to that particular URL

* Can be set either by server or browser

o Communications: header on a page can request a cookie set

o Defining: JavaScript functions to define cookies

2/24/2020

CS132 Lecture 15: Web Application Architectures Il

Cookie Properties

Name and the value associated with that name

Maximum age
o When the cookie should be ignored/removed by browser

o 0 means when the browser closes

Domain/port and path
o When to include the cookie in a HTTP request
o Domains can be as specific as desired

o cs.brown.edu, taiga.cs.brown.edu, taiga.cs.brown.edu/myapp

If you need security, use HTTPS

o Cookies can be restricted to only work with HTTPS

2/24/2020 11

CS132 Lecture 15: Web Application Architectures Il

Cookie Management

« Libraries in server to manage cookies
o Call to add/set a cookie (language-dependent)

o Call to read cookie value

o Added to headers on output pages

o Used to extract session ids

- Similar libraries exist in the client (not widely used)

2/24/2020

Content [e—2

HTML

Server <

<
<«

Application Session

— Resources

(JS, CSS, GIF,
PNG, JPEG)

Ad Tracking

State Provider

. Web Server .

eCreates Secure '
Session ID and |
Storedatain |3
State Provider

eSever takes

the Session ID

CS132 Lecture 15: Web Application Architectures Il

*Store Client

data separately—
*Sends data to
Server based
on Session ID

*Request For
Pages and
want to storec
some
information

eNext time

clients request
again for some
information

Session Identifiers

and passed it
to Session
State Provider

« How much information needs to be conveyed to and from browser?

o We've talked about lots of things, some can be large

o Really only need one piece of data
= Use this as an index to a table (or database) on the server
= Table holds all the information related to the session

o This is the session ID

 Tracking Session Ids is difficult
o Ensure validity (difficult to spoof; only server-generated Ids)
Ensure it is coming from same machine
Setting and checking cookies correctly
Time out if not used for certain amount of time

o
o
o
o Handling explicit end of session

2/24/2020 13

CS132 Lecture 15: Web Application Architectures Il

Session Management

 Use built in session-support

o For your server

o Call to begin/enter session
= Automatically looks at cookies or url
= Validates the session
= Makes session data available

o Call to terminate session

 Can store arbitrary information with se

o Can be stored in memory (not ideal)
o Can be stored in application database
o More often stored separately (REDIS)

2/24/2020

(1) Sessionsetup)

permissive

(2) sessionfixation)

(3) sessionentrance)

CS132 Lecture 15: Web Application Architectures Il

Cookies, Sessions and Express

var session = require(‘express-session’);
var cookieparser = require(‘cookie-parser’);

Arrowjs

app.use(cookieparser(“KEY"));
app.use(session { secret : "KEY", store: new RedisStore(), ...
app.use(sessionManager);

Express-Session

Express

Nginx Load

Balancer
cee

function sessionManager(req,res,next) {

if (reqg.session.uuid == null) {
req.session.uuid = <unique id>
req.session.save();

Express-Session

}

next()

}

reqg.session.<field>

2/24/2020

e
Postgresql

CS132 Lecture 15: Web Application Architectures Il

Model-View-Controller

Controller

Data
Management

Data Display

2/26/2020

CS132 Lecture 15: Web Application Architectures Il

Data Manipulation

JavaScript SQL/NOSQL

Data Data

Web Browser Web Server Database

2/24/2020 17

CS132 Lecture 15: Web Application Architectures Il

DRY Principle

JavaScript

Data

Web Browser Web Server Database

- Don't Repeat Yourself

o Every piece of knowledge must have a single unambiguous authoritative
representation within a system

« Why have 3 different representations of | Eswpessmrs

I will not repeat myself
. . I will not repeat myself
o More code to maintain 1 nk e e

I will not repeat myself
o More code to change when data changes Lwill ot cepeat mysel
1 will not repeat myself

1 will not repeat myself
o More chance for bugs T et et Aol

DON'T REPEAT YOURSELF

Repetition is the root of all software evil

2/24/2020

CS132 Lecture 15: Web Application Architectures Il

Django and Ruby on Rails (and Flask)
* Widely used

o Django: instagram, pinterest, ...
o Ruby/rails: github, basecamp, ...

 Similar frameworks exist (e.g. Flask)
« Mostly a back end technology

o Can be paired with a templating engine
o Can be paired with front end templating as well

« Require knowing Python/Ruby
o In addition to JavaScript, HTML, ...

2/24/2020

CS132 Lecture 15: Web Application Architectures Il

Django/Ruby Frameworks

 Express-like dispatch
o Based on static tables, not executed code

o With functions to handle the results

Logic to control deployment, server soema ~%=

Libraries to handle common web ap

Simple connection to database

Simplified Data Management

2/24/2020

CS132 Lecture 15: Web Application Architectures |I O/R Mapping

DJANGO and Ruby/Rails 89
@‘

=
oo
o
)
00
=
o
o
©
=

« Map from internal objects to SQL autom: ‘
o Changes in the object -> SQL updates et
o Objects created automatically from SQL database
o SQL Tables created automatically from object definition
o Changes to object definition change the database

* Map from internal objects to HTML automatically
o Using templates

* Map from internal objects to JSON automatically
o Changes in the object -> go to web site if needed

« OBJECT-RELATIONAL MODELING

Relational Database

2/24/2020 21

CS132 Lecture 15: Web Application Architectures Il

Object-Relational Modeling
« Not limited to Django-Ruby

o There are libraries to provide some of this functionality

o Even for Node.JS
« Not limited to SQL back ends

o NoSQL databases can be used as
= Direct mapping to object from json

o Cache the current state in memory as objects
= This allows fast query at times

o Update updates memory and the database

« What are the problems with ORM?

2/24/2020

Relational Model

Relation
Tuple

Column

Object Model

Simikar Class

Similar —————» |nstance Object

Similar »| Attribute

22

CS132 Lecture 15: Web Application Architectures Il

RESTful Web Applications

e Client-Server model

o Client handles presentation, server handles storage

o MVC : client = view, server = model; controller can be either, generally client
« Stateless
o All data needed for request is passed

« Client maintains data

o Sends updates, requests to server

o Using commands encoded in URL

“THE PRomist of REST BEING DEALT wiTH.”

2/24/2020 23

CS132 Lecture 15: Web Application Architectures Il

RESTful API HTTP Methods

 Collection API .../collection
o GET : return list of elements in the collection
o PUT : Replace the entire collection
o POST : Add an entry to the collection

o DELETE : Delete the entire collection

o REST API
« Element API: .../collection/:item Design

o GET : Retrieve the given item AP

GET hasks - display all tasks
POST ftasks - create a new task

o PUT : Replace or create the given item GET Raskaifl doplay 8 waky 0
. . DELETE htasks/{id} - delete a task by ID
o DELETE : delete the given item ——

« Action API: .../collection/:item/verb

2/24/2020

24

CS132 Lecture 15: Web Application Architectures Il

DJANGO/RUBY with REST

- URL identifies the object in the server ek
o What field to access or change \Jsi.
o New value of the field (using PUT) respore 1o uesT
« Front end makes changes to long tern ,,uf django reumon

o By sending POST requests

 Front end gets current state of objects “‘“\W/
o By sending GET requests ‘Moos:g

MANAGERS

DATABASE

2/24/2020 25

CS132 Lecture 15: Web Application Architectures Il

Content Management Systems

OPTIMIZATION
[
ACCESSIBILITY @ :~4@ SECURITY

Creation and Modification of digital content
o The contents of the web site

Easy to create good-looking sites

o With modern bells and whistles (e.g. slide shows)

Easy to update the contents
o For a non-programmer

Standard interaction mechanisms often included

o User accounts, ...
o Blogs, Wikis, ...

2/24/2020 26

CS132 Lecture 15: Web Application Architectures Il

Content Management Systems

WordPress

o The standard
o PHP based

o Extensible with modules or your own php code

% coMMUNITY
- OO W |
@ &107 I b2evolution

%J" DokuWiki concrete’
“Scuttle 'Q aricens Drupal

* Drupal %‘XOOPS 4 <PI|gg & e B zikula
o Relatively common, more flexible modx @eklog R g zer *mambo
o Fewer modules and features PHPDug Qo

&o-commerce

o PHP Based g‘ “phppb TYPO3 "TEx%ERN

Django-CMS Joomlol o PRESTASHOP zencart @ Plone

o Used for Brown CS web site

o Python (Django) based

Lots of others available

2/24/2020 27

CS132 Lecture 15: Web Application Architectures Il

CMS Features

« Templating engine
o MVC model - separate presentation from application logic

o Reusable pieces

* Roles and permissions
o Authentication
o Roles: admin, author, editor, user, ...

STATISTICS

o Hide complexity

2/24/2020

CS132 Lecture 15: Web Application Architectures Il

CMS Features

* In-Browser Editing

o Either separate editor on on-page editing

Simplified

Content Management

o Layout and style
o Images and media

o Plugins such as Google maps
o EXAMPLE: Brown CS web pages

» Publishing workflow
o Create -> Edit -> Approve -> Publish -> Update -> Approve ...

 Versioning
o Revert, record of who did what

2/24/2020 29

CS132 Lecture 15: Web Application Architectures Il

CMS Features

« Multilingual @
o Support for different languages '
Accessibility support @.Q
Fresh &
Upto Date

Multi-site

o Multiple sites running on one server

Tree-like page structure

o With appropriate permissions

RESTful URLs
Analytics

2/24/2020 30

CS132 Lecture 15: Web Application Architectures Il Apache + ModSecurity: Reverse Proxy

CMS Integration —_—

LI
Apache
webserverl

""" Tomcat
https/443 webserver2
reverse
proxy

o For the appropriate pages

http/80

« Code the other pages separately
o Node.JS or other front end

Apache
webserver3

* Integration in various ways
o Django with Django-CMS
o Reverse Proxy

= Front end server redirects to appropriate back end

2/24/2020 31

CS132 Lecture 15: Web Application Architectures Il

Next Time

« Node.JS lab

2/24/2020 32

CS132 Lecture 15: Web Application Architectures Il

Next Time

« Node.JS lab
« Homework: Prelab for Node.JS

33

2/24/2020

CS132 Lecture 15: Web Application Architectures Il

CDQuery (Again)

Find Your CDs
CD Search: I I
Find Your CDs
Title CD#1 title and major artist
* Track 2
Artist CD#2 title and major artist
* Track 2 .
Track Find Your CDs
CD#3 title and major artist
* Track 2 ARTIST
Description
CD#4 title and major artist
—Llackd TRACK Title
Artist
Length
Description
TRACK Title
Artist
Length
Description
2/24/2020

34

Web Server

lllllllll

CS132 Lecture 15: Web Application Architectures Il

Server Side
===========

the server to the ERE
xxxxxxxx
object (Serviet)

XMLHttpRequest

var req = new XMLHttpRequest();
req.onreadystatechange = function () {

AJAX interaction with XMLHttpRequest object

if (req.readyState == req.DONE) {
if (req.status == 200) << Handle returned data req.responseText>>
else << Handle error >>

|
req.open(“POST”,)’/url/...”);
rq.setRequestHeader(“Content-type”, “application/json’);

rq.send(<data to send>);

2/24/2020 35

CS132 Lecture 15: Web Application Architectures Il

Session Management

(1) session setup

)

permissive Session

strict

LA, § - - idle sesslon
:10) Session maintenance)
S

’ timeout

(2) Session fixation

)

(3) Sessionentrance)

2/24/2020

server

Pass authentication Authenticate

[username | 0o o server

[nassword |
Generate unique
Sessionld on successful
authentication

'\ Pass sessionld to client
Store session Id

Give access to page if session valid

Mode = “InPra Mode = “SQLServer’
~StateServer
L , L Same Worker Out-of-process Out-of-process
— — Porcess ASPNET State SQL Server
Store Store (aspnet_wp.exe) Service Database table
sessionid sessionid
Request another page
Sessionid passed (as cookie or appended to URL) to
server Verify the sessionld

is valid or not from
server-side stored
sessionid

36

CS132 Lecture 15: Web Application Architectures Il

Sessions in URLs

. LOGIN ’
o Especially if the URL is public (GET rather than POST) onine Sericng

 Putting sessions Ids in URLs is not a good idea i, '

o GET requests may be logged; server logs now contain private information
o Copy and paste of URLs can confuse the server

o Server might use the passed in session id, allowing attacker to steal
information

e Solution: use cookies

o But what if cookies aren’t enabled?

2/24/2020 37

CS132 Lecture 15: Web Application Architectures Il

Session Tracking Mechanisms

Fred WEB TIER W‘
| stance :|0W users’

] 2039856 |] session data
R . . L_| Serviet 3949576 | o I Stance I‘
« Encode the session id in the URL ' s
tolomt;a ns}ance |”'|'055!::$£“|‘ Fred's session
o All requests from the browser are URLs "
o The ID can be part of each request e on s

machine

» http://.... 251D =XXXXXXXXXXXXXXXX K. ..

« How to get this into the URLs on the page
o If requests come from forms, add a hidden field

o Requests for new pages, replace the URL on generation
o How to get all URLs on the page
o Problems?

2/24/2020

38

http://..../?SID=xxxxxxxxxxxxxxxx&
http://..../?SID=xxxxxxxxxxxxxxxx&
http://..../?SID=xxxxxxxxxxxxxxxx&

CS132 Lecture 15: Web Application Architectures Il

Question

« Which is not true about sessions in a web application?

A. Sessions represent a connected series of user actions
Sessions must have a fixed start

Sessions must have a fixed end

Sessions can include a variety of different types of information

mo O w

Sessions can be supported by cookies or URL query or post data

2/24/2020 39

CS132 Lecture 15: Web Application Architectures Il

XMLHttpRequest (using jQuery)

¢ Syntax

var req = $.ajax({ method: "“POST", url: “/url/...",
data: { data to send },
success: function(data,sts){ ... },

error: function(msg,sts,err){ ... }

ok
* Request gets sent when JavaScript returns

« Other parameters and events are available

2/24/2020 40

CS132 Lecture 15: Web Application Architectures Il

CQ Query Tasks

 Primary Tasks
o Initial Search For CDs
o Look at the details of a specific CD

o Refine initial search by title, artist, track, genre; sort results

« Should these be done client-side or server-side?
o All server side
o Initial search server side, rest client side
o Refinement & detail client side, rest server side

o Detail page client side, rest server side
o All client side

2/24/2020 41

CS132 Lecture 15: Web Application Architectures Il

Node.JS Event Example

IOOKING FOR EVENTS

pananR3 138 UopdUN) Sy

« Request comes in
o JavaScript code creates database query based on parameters

o Starts query and registers continuation

« When query completes (done asynchronously)

o Template parameters computed from database result.

o Template file is opened and a new continuation is provided

« When file is ready to read (done asynchronously)

o A stream from the file to the client is established

o The file is templated and output is output asynchronously

2/24/2020 42

CS132 Lecture 15: Web Application Architectures Il

Asynchronous Operations

« Node.JS libraries define asynchronous operations

o File open, read

The event loop efficiently
2 manages a thread pool and
executes tasks efficiently...

o Network read

read
2

o Database queries and updates

o Web sockets

« Common combined operations also defin_........

callback as tasks complete

o Streams: copy from one place to another

= From the file system to the network
= All handled in background

2/24/2020 43

CS132 Lecture 15: Web Application Architectures Il

Web Sockets

XHR polling WebSocket

ol @‘&

GET /poII GET /sse ------- GET /ws Exoweer

Response 1

Time 100ms 150ms 250ms ——p

\\\\
AR

v v v v \

— HTTP protocol — EventSource protocol — WebSocket protocol

N
d
|

2/24/2020 44

CS132 Lecture 15: Web Application Architectures Il

Model-View-Controller

View Controller Model

DEE]

Data Display Management Data Store

Web Browser Web Server Database

2/24/2020 45

CS132 Lecture 15: Web Application Architectures Il

Model-View-Controller

- Basic idea is to separate the display, the data, and the

logic
o Each can be change independent of the others

‘ EXaCtIy hOW this is done Va rious fr(@ REQUEST> Appicfntlr:”ir
J the estand g t

ppptdtth

o Some do it with a common data abstractior

o Some do it with callbacks

o All call themselves MVC

Your website design, Database related, not

HTML files no images necessary database,

* Different people mean different th |

2/24/2020

CS132 Lecture 15: Web Application Architectures Il

React-JS

« Templates mixed with JavaScript code

o Expressed as functions

o With HTML
o And embedded code

« Can be done either server side or client side

o Use for templating in the server

React

Ly

2/24/2020

CS132 Lecture 15: Web Application Architectures Il

AngularJS and VuelJS

Templates that are executed at run time

Automatically update the page as values change
MVC (Model-View-Controller)

o Model = the data structures

o View = the template
o Control = commands that modify the data

Combine this with Object-Relational Modeling

o Make a simple, consistent web application

2/24/2020 48

CS132 Lecture 15: Web Application Architectures Il

What Information is Preserved

wizcap

T —

: Hew
T e+ 3 darbsad =
e Betwee n pag eS T]li'ﬂm ._&‘i.-ooum::::»ct-:b- ap v pdueardey el SvonSaszion S0
.. . . Welcome Back
o Authentication information

. Information on Your Session:
o Current state (shopping cart, nearest store, ..

M . D D2LFNRAAAAAAJAGIMVEQAAS
O HIStory (Vldeos WatChed’ ° ') Creation Tune :e\l'dNov l?:;:-ﬂ.lil EST l:?@ ~
Time of Last Access WedNov 17 13:44: 25 EST 19%9
« Between runs (between browsers) |yesseratreio:
. . =1 — = |
o User information S e
o History

o Is this session based?

2/24/2020

49

CS132 Lecture 15: Web Application Architectures Il

Cookies, Sessions and Express

var session = require(‘express-session’);

var cookieparser = require(‘cookie-parser’);
app.use(cookieparser(“"KEY"));

app.use(session { secret : "KEY", store: new RedisStore(), ...}));
app.use(sessionManager);

function sessionManager(req,res,next) {

if (reqg.session.uuid == null) {
req.session.uuid = <unique id>
req.session.save();

}

next()

}

eee

reqg.session.<field>

2/24/2020

Nginx Load
Balancer

SR
Postgresql

50

