
Lecture 15

Web Application Architectures II

CS132 Lecture 15: Web Application Architectures II

CDQuery User Library

• Suppose CDQuery were modified to know the user’s
current collection
o Understand what CDs they owned
o Use this information in querying and display

• Then the application would need to know who the user
was
o Why is this problematic?

2/24/2020 2

CS132 Lecture 15: Web Application Architectures II

Web Applications and HTTP
• The web application assumes it knows the user

o One request follows another
o Common shopping cart for the user
o Look up information based on the user
o Server needs to know who the user is

▪ Even if they haven’t logged in

• HTTP is stateless
o Each request is independent of previous requests
o Requests come on different sockets at different times

• This disparity is addressed using sessions

2/24/2020 3

CS132 Lecture 15: Web Application Architectures II

What is a Session

• A mechanism for maintaining state
o For the particular user and the particular web app
o Within the server
o Somewhat independent of the browser

• The session contains information about the current state
o Information about the particular user
o Information for the particular application
o Information for this particular use of the application

2/24/2020 4

CS132 Lecture 15: Web Application Architectures II

Sessions
• Represent a connected series of user actions

o Example: log-in, select-items to purchase, check-out, log-
out

o Example: select source/destination cities, dates; request
schedules; select flights; login; purchase tickets

• Needs to have a fixed start
o Might have a fixed end (log-out request)
o More likely, time-out if unused; exit when browser closes

2/24/2020 5

CS132 Lecture 15: Web Application Architectures II

Session Properties
• What information needs to be kept with the session

o Depends on the application

• Sample information
o User id if one exists
o Host, last-used time
o Shopping cart

▪ Associated with user id?
▪ How to handle log in afterwards

o Input values for forms (to be (re)filled automatically)
o Previous searches or history
o Site customization values

2/24/2020 6

CS132 Lecture 15: Web Application Architectures II

Tracking Sessions

• Should the CLIENT track the session
o If you don’t browse off the page, these can be kept in html

▪ Hidden fields, JavaScript variables, separate DOM tree, etc.
o But if you replace the page, they disappear
o Also, if there are multiple pages up, what is used

• HTML 5 Local storage
o Key-value pairs for the same domain
o Settable and gettable from JavaScript
o Works if the information is local & HTML5 is available

▪ And users always use the same browser and same machine (without incognito mode)

2/24/2020 7

CS132 Lecture 15: Web Application Architectures II

Tracking Sessions

• Should the SERVER track the session
o Maintain as part of state for user
o But need to send/get it from the browser

▪ Server needs to tell the browser the state for new pages
▪ Browser needs to tell the server the state for all requests

o What happens if there are multiple pages displayed
o What happens with back and forward buttons

• Client and Server both track the session
o Typically using cookies

2/24/2020 8

CS132 Lecture 15: Web Application Architectures II

Tracking Sessions

2/24/2020 9

CS132 Lecture 15: Web Application Architectures II

Cookies

• Cookies are a general mechanism
o For conveying information between browser and server
o Name-value pairs associated with a particular URL

▪ Can have multiple pairs
o Sent automatically by the browser as part of the HTTP header

▪ With any request to that particular URL

• Can be set either by server or browser
o Communications: header on a page can request a cookie set
o Defining: JavaScript functions to define cookies

2/24/2020 10

CS132 Lecture 15: Web Application Architectures II

Cookie Properties
• Name and the value associated with that name
• Maximum age

o When the cookie should be ignored/removed by browser
o 0 means when the browser closes

• Domain/port and path
o When to include the cookie in a HTTP request
o Domains can be as specific as desired
o cs.brown.edu, taiga.cs.brown.edu, taiga.cs.brown.edu/myapp

• If you need security, use HTTPS
o Cookies can be restricted to only work with HTTPS

2/24/2020 11

CS132 Lecture 15: Web Application Architectures II

Cookie Management
• Libraries in server to manage cookies

o Call to add/set a cookie (language-dependent)
o Call to read cookie value
o Added to headers on output pages
o Used to extract session ids

• Similar libraries exist in the client (not widely used)

2/24/2020 12

CS132 Lecture 15: Web Application Architectures II

Session Identifiers

• How much information needs to be conveyed to and from browser?
o We’ve talked about lots of things, some can be large
o Really only need one piece of data

▪ Use this as an index to a table (or database) on the server
▪ Table holds all the information related to the session

o This is the session ID

• Tracking Session Ids is difficult
o Ensure validity (difficult to spoof; only server-generated Ids)
o Ensure it is coming from same machine
o Setting and checking cookies correctly
o Time out if not used for certain amount of time
o Handling explicit end of session

2/24/2020 13

CS132 Lecture 15: Web Application Architectures II

Session Management
• Use built in session-support

o For your server
o Call to begin/enter session

▪ Automatically looks at cookies or url
▪ Validates the session
▪ Makes session data available

o Call to terminate session

• Can store arbitrary information with session
o Can be stored in memory (not ideal)
o Can be stored in application database
o More often stored separately (REDIS)

2/24/2020 14

CS132 Lecture 15: Web Application Architectures II

Cookies, Sessions and Express
var session = require(‘express-session’);
var cookieparser = require(‘cookie-parser’);
…
app.use(cookieparser(“KEY”));
app.use(session { secret : “KEY”, store: new RedisStore(), …}));
app.use(sessionManager);
…
function sessionManager(req,res,next) {

if (req.session.uuid == null) {
 req.session.uuid = <unique id>
req.session.save();

}
next()

}
…
req.session.<field>

2/24/2020 15

CS132 Lecture 15: Web Application Architectures II

Model-View-Controller

2/26/2020 16

Data Display

Data
Management

Data Store

ModelView

Controller

CS132 Lecture 15: Web Application Architectures II

Data Manipulation

2/24/2020 17

JavaScript
Data

???
Data

SQL/NOSQL
Data

Web Browser Web Server Database

CS132 Lecture 15: Web Application Architectures II

DRY Principle

• Don’t Repeat Yourself
o Every piece of knowledge must have a single unambiguous authoritative

representation within a system

• Why have 3 different representations of the data
o More code to maintain
o More code to change when data changes
o More chance for bugs

2/24/2020 18

JavaScript
Data

???
Data

SQL/
NOSQL

Data

Web Browser Web Server Database

CS132 Lecture 15: Web Application Architectures II

Django and Ruby on Rails (and Flask)

• Widely used
o Django: instagram, pinterest, …
o Ruby/rails: github, basecamp, …

• Similar frameworks exist (e.g. Flask)
• Mostly a back end technology

o Can be paired with a templating engine
o Can be paired with front end templating as well

• Require knowing Python/Ruby
o In addition to JavaScript, HTML, …

2/24/2020 19

CS132 Lecture 15: Web Application Architectures II

Django/Ruby Frameworks

• Express-like dispatch
o Based on static tables, not executed code
o With functions to handle the results

• Logic to control deployment, server setup, etc.
• Libraries to handle common web app features
• Simple connection to database
• Simplified Data Management

2/24/2020 20

CS132 Lecture 15: Web Application Architectures II

DJANGO and Ruby/Rails
• Map from internal objects to SQL automatically

o Changes in the object -> SQL updates
o Objects created automatically from SQL database
o SQL Tables created automatically from object definition
o Changes to object definition change the database

• Map from internal objects to HTML automatically
o Using templates

• Map from internal objects to JSON automatically
o Changes in the object -> go to web site if needed

• OBJECT-RELATIONAL MODELING

2/24/2020 21

CS132 Lecture 15: Web Application Architectures II

Object-Relational Modeling
• Not limited to Django-Ruby

o There are libraries to provide some of this functionality
o Even for Node.JS

• Not limited to SQL back ends
o NoSQL databases can be used as

▪ Direct mapping to object from json
o Cache the current state in memory as objects

▪ This allows fast query at times
o Update updates memory and the database

• What are the problems with ORM?

2/24/2020 22

CS132 Lecture 15: Web Application Architectures II

RESTful Web Applications

• Client-Server model
o Client handles presentation, server handles storage
o MVC : client = view, server = model; controller can be either, generally client

• Stateless
o All data needed for request is passed

• Client maintains data
o Sends updates, requests to server
o Using commands encoded in URL

2/24/2020 23

CS132 Lecture 15: Web Application Architectures II

RESTful API HTTP Methods
• Collection API …/collection

o GET : return list of elements in the collection
o PUT : Replace the entire collection
o POST : Add an entry to the collection
o DELETE : Delete the entire collection

• Element API: …/collection/:item
o GET : Retrieve the given item
o PUT : Replace or create the given item
o DELETE : delete the given item

• Action API: …/collection/:item/verb

2/24/2020 24

CS132 Lecture 15: Web Application Architectures II

DJANGO/RUBY with REST

• URL identifies the object in the server
o What field to access or change
o New value of the field (using PUT)

• Front end makes changes to long term objects
o By sending POST requests

• Front end gets current state of objects
o By sending GET requests

2/24/2020 25

CS132 Lecture 15: Web Application Architectures II

Content Management Systems

• Creation and Modification of digital content
o The contents of the web site

• Easy to create good-looking sites
o With modern bells and whistles (e.g. slide shows)

• Easy to update the contents
o For a non-programmer

• Standard interaction mechanisms often included
o User accounts, …
o Blogs, Wikis, …

2/24/2020 26

CS132 Lecture 15: Web Application Architectures II

Content Management Systems

• WordPress
o The standard
o PHP based
o Extensible with modules or your own php code

• Drupal
o Relatively common, more flexible
o Fewer modules and features
o PHP Based

• Django-CMS
o Used for Brown CS web site
o Python (Django) based

• Lots of others available

2/24/2020 27

CS132 Lecture 15: Web Application Architectures II

CMS Features

• Templating engine
o MVC model – separate presentation from application logic
o Reusable pieces

• Roles and permissions
o Authentication
o Roles: admin, author, editor, user, …
o Hide complexity

2/24/2020 28

CS132 Lecture 15: Web Application Architectures II

CMS Features
• In-Browser Editing

o Either separate editor on on-page editing
o Layout and style
o Images and media
o Plugins such as Google maps
o EXAMPLE: Brown CS web pages

• Publishing workflow
o Create -> Edit -> Approve -> Publish -> Update -> Approve …

• Versioning
o Revert, record of who did what

2/24/2020 29

CS132 Lecture 15: Web Application Architectures II

CMS Features
• Multilingual

o Support for different languages

• Accessibility support
• Multi-site

o Multiple sites running on one server

• Tree-like page structure
o With appropriate permissions

• RESTful URLs
• Analytics

2/24/2020 30

CS132 Lecture 15: Web Application Architectures II

CMS Integration

• Can use CMS as a part of the web site
o For the appropriate pages

• Code the other pages separately
o Node.JS or other front end

• Integration in various ways
o Django with Django-CMS
o Reverse Proxy

▪ Front end server redirects to appropriate back end

2/24/2020 31

CS132 Lecture 15: Web Application Architectures II

Next Time

• Node.JS lab

2/24/2020 32

CS132 Lecture 15: Web Application Architectures II

Next Time

• Node.JS lab
• Homework: Prelab for Node.JS

2/24/2020 33

CS132 Lecture 15: Web Application Architectures II

CDQuery (Again)

2/24/2020 34

CS132 Lecture 15: Web Application Architectures II

XMLHttpRequest

var req = new XMLHttpRequest();
req.onreadystatechange = function () {

if (req.readyState == req.DONE) {
if (req.status == 200) << Handle returned data req.responseText>>
else << Handle error >>

} };
req.open(“POST”,”/url/…”);
rq.setRequestHeader(“Content-type”, “application/json”);
rq.send(<data to send>);

2/24/2020 35

CS132 Lecture 15: Web Application Architectures II

Session Management

2/24/2020 36

CS132 Lecture 15: Web Application Architectures II

Sessions in URLs

• Putting sessions Ids in URLs is not a good idea
o Especially if the URL is public (GET rather than POST)

• Problems
o GET requests may be logged; server logs now contain private information
o Copy and paste of URLs can confuse the server
o Server might use the passed in session id, allowing attacker to steal

information

• Solution: use cookies
o But what if cookies aren’t enabled?

2/24/2020 37

CS132 Lecture 15: Web Application Architectures II

Session Tracking Mechanisms

• Encode the session id in the URL
o All requests from the browser are URLs
o The ID can be part of each request

▪ http://....?SID=xxxxxxxxxxxxxxxx&...

• How to get this into the URLs on the page
o If requests come from forms, add a hidden field
o Requests for new pages, replace the URL on generation
o How to get all URLs on the page
o Problems?

2/24/2020 38

http://..../?SID=xxxxxxxxxxxxxxxx&
http://..../?SID=xxxxxxxxxxxxxxxx&
http://..../?SID=xxxxxxxxxxxxxxxx&

CS132 Lecture 15: Web Application Architectures II

Question

• Which is not true about sessions in a web application?
A. Sessions represent a connected series of user actions
B. Sessions must have a fixed start
C. Sessions must have a fixed end
D. Sessions can include a variety of different types of information
E. Sessions can be supported by cookies or URL query or post data

2/24/2020 39

CS132 Lecture 15: Web Application Architectures II

XMLHttpRequest (using jQuery)

• Syntax
var req = $.ajax({ method: “POST”, url: “/url/…”,
 data: { data to send },
 success: function(data,sts) { … },
 error: function(msg,sts,err) { … }
 });

• Request gets sent when JavaScript returns
• Other parameters and events are available

2/24/2020 40

CS132 Lecture 15: Web Application Architectures II

CQ Query Tasks
• Primary Tasks

o Initial Search For CDs
o Look at the details of a specific CD
o Refine initial search by title, artist, track, genre; sort results

• Should these be done client-side or server-side?
o All server side
o Initial search server side, rest client side
o Refinement & detail client side, rest server side
o Detail page client side, rest server side
o All client side

2/24/2020 41

CS132 Lecture 15: Web Application Architectures II

Node.JS Event Example
• Request comes in

o JavaScript code creates database query based on parameters
o Starts query and registers continuation

• When query completes (done asynchronously)
o Template parameters computed from database result.
o Template file is opened and a new continuation is provided

• When file is ready to read (done asynchronously)
o A stream from the file to the client is established
o The file is templated and output is output asynchronously

2/24/2020 42

CS132 Lecture 15: Web Application Architectures II

Asynchronous Operations

• Node.JS libraries define asynchronous operations
o File open, read
o Network read
o Database queries and updates
o Web sockets

• Common combined operations also defined
o Streams: copy from one place to another

▪ From the file system to the network
▪ All handled in background

2/24/2020 43

CS132 Lecture 15: Web Application Architectures II

Web Sockets

2/24/2020 44

CS132 Lecture 15: Web Application Architectures II

Model-View-Controller

2/24/2020 45

Data Display Data
Management Data Store

Web Browser Web Server Database

ModelView Controller

CS132 Lecture 15: Web Application Architectures II

Model-View-Controller

• Basic idea is to separate the display, the data, and the
logic
o Each can be change independent of the others

• Exactly how this is done various from case to case
o Some do it with a common data abstraction
o Some do it with callbacks
o All call themselves MVC

• Different people mean different things

2/24/2020 46

CS132 Lecture 15: Web Application Architectures II

React-JS

• Templates mixed with JavaScript code
o Expressed as functions
o With HTML
o And embedded code

• Can be done either server side or client side
o Use for templating in the server

2/24/2020 47

CS132 Lecture 15: Web Application Architectures II

AngularJS and VueJS

• Templates that are executed at run time
• Automatically update the page as values change
• MVC (Model-View-Controller)

o Model = the data structures
o View = the template
o Control = commands that modify the data

• Combine this with Object-Relational Modeling
o Make a simple, consistent web application

2/24/2020 48

CS132 Lecture 15: Web Application Architectures II

What Information is Preserved

• Between pages
o Authentication information
o Current state (shopping cart, nearest store, …)
o History (videos watched, …)

• Between runs (between browsers)
o User information
o History
o Is this session based?

2/24/2020 49

CS132 Lecture 15: Web Application Architectures II

Cookies, Sessions and Express
var session = require(‘express-session’);
var cookieparser = require(‘cookie-parser’);
…
app.use(cookieparser(“KEY”));
app.use(session { secret : “KEY”, store: new RedisStore(), …}));
app.use(sessionManager);
…
function sessionManager(req,res,next) {

if (req.session.uuid == null) {
 req.session.uuid = <unique id>
req.session.save();

}
next()

}
…
req.session.<field>

2/24/2020 50

