
Lecture 20:

Database Lab

CS132 Lecture 13: Node.JS Lab

Objective

• Recall the 6 degrees of Kevin Bacon
• You can do the same thing with CDs

o Relationships based on multiple artists on one CD
o Relationships based on multiple artists doing the same song
o Relationships based on both or on other criteria

• Start with an artist
o Find all related artists
o Find all artists related to them, etc.
o Repeat until nothing changes
o Output interesting information (your choice):

▪ What fraction of all artists are in the set?
▪ What is the most prominent artist not in the set?
▪ What is the maximum number of links needed?
▪ How genre specific are the sets?
▪ How many non-singleton sets are there? How many singleton sets?

3/4/2020 2

CS132 Lecture 13: Node.JS Lab

Helpful Relations
• For MYSQL we have precomputed 2 relations

o shared_disk(artist1,artist2)
▪ Entry if artist1 and artist2 are on the same disk

» CREATE TABLE shared_disk AS
» SELECT DISTINCT t1.artistid AS artist1, t2.artistid AS artist2
» FROM track t1, track t2
» WHERE t1.diskid = t2.diskid
» AND t1.artistid != t2.artistid;

o shared_song(artist1,artist2)
▪ Entry if artist1 and artist2 both recorded a song with the same name

» CREATE TABLE shared_song AS
» SELECT DISTINCT t1.artistid AS artist1, t2.artistid AS artist2
» FROM track t1, track t2
» WHERE t1.name = t2.name
» AND t1.artistid != t2.artistid;

3/6/2020 3

CS132 Lecture 13: Node.JS Lab

Helpful Collections
• We created a sharedDisk collection in MongoDB

o _id : artist name key,
o value: object with related artist => count

» let mapshareddisk = function() {
» let tracks = this.tracks;
» for (let i = 0; i < tracks.length; ++i) {
» let t1 = tracks[i];
» if (t1.artist == null) continue;
» let rslt = { };
» let use = false;
» for (let j = 0; j < tracks.length; ++j) {
» let t2 = tracks[j];
» if (t2.artist == null) continue;
» if (t1.artist != t2.artist) {
» rslt[t2.artist] = 1;
» use = true;
» }
» }
» if (use) emit(t1.artist, rslt)
» }
» }
» let reducer = function(key,values) {
» let rslt = { };
» for (let v of values) {
» for (k in v) {
» if (rslt[k] == undefined) {
» rslt[k] = v[k];
» }
» else {
» rslt[k] += v[k];
» }
» }
» }
» return rslt;
» }

» db.cds.mapReduce(mapshareddisk,reducer,{ out: "sharedDisk" });

3/6/2020 4

CS132 Lecture 13: Node.JS Lab

Mechanics
• You should write a node.js program

o Input (artist name) can be
▪ Command line
▪ Internal constants (easy to change however) (var INPUT = “nsync”;)
▪ REPL (read-eval-print loop)
▪ From a web page

o Access the database as needed
▪ Both MongoDB and MySQL databases are available
▪ Determine which to use and install appropriate node.js modules

o Based on what relationship you choose

• Note there are about 1.5M artists total
o Probably some duplicates (might want to start with multiple)

• Plan your program before implementing it

3/4/2020 5

CS132 Lecture 13: Node.JS Lab

Database Access
• MongoDB

o mongodb://bdognom-v2.cs.brown.edu/cdquery
o User id: cs132, Password: csci1320
o Collection: cds, sharedDisk
o npm install mongodb --save

• MySQL
o mysql://cs132:csci1320@bdognom-v2.cs.brown.edu/cdquery
o Tables: artist, disk, extended, track, words, shared_disk, shared_song
o npm install any-db-mysql --save

• There is also a 1% sample database available on both
o cdquery1
o Will be faster for use in testing :: USE THIS FIRST

3/4/2020 6

CS132 Lecture 13: Node.JS Lab

Implementation Notes
• Main Routine:

o Given a set of artists, find all related artists
o This requires one or more database operations
o With SQL, might want to create a temporary relation of artists

▪ Alternative: very long query
▪ Create Table ArtistSet { artistid : char(12) }
▪ Insert INTO Table ArtistSet Value (“…”)
▪ SELECT ? FROM ? WHERE ? AND artistid IN (SELECT * FROM ArtistSet)

• Then apply this routine
o To initial set
o To the new entries generated each time

3/4/2020 7

CS132 Lecture 13: Node.JS Lab

Designers
• Design & implement a web page for this assignment

o Explain the problem to the user
o Allow input of an artist

▪ Possibly search for artist and select a set of equivalent ones

o Check for artist validity (provide for this, don’t do it)
o Provide output page showing results
o What else might you want

▪ Find popular artist not in set?
▪ Change relationship criteria

• Can team up with concentrators to produce a full application

3/4/2020 8

CS132 Lecture 13: Node.JS Lab

Next Time

• Mobile applications

3/4/2020 9

