v

CS1320
Creating Modern Web and

Mobile Applications
Lecture 20:

%

CS132 Lecture 13: Node.JS Lab

Objective

* Recall the 6 degrees of Kevin Bacon
« You can do the same thing with CDs

o Relationships based on multiple artists on one CD
o Relationships based on multiple artists doing the same song
o Relationships based on both or on other criteria

 Start with an artist
o Find all related artists
o Find all artists related to them, etc.
o Repeat until nothing changes
o Output interesting information (your choice):
= What fraction of all artists are in the set?
What is the most prominent artist not in the set?
What is the maximum number of links needed?
How genre specific are the sets?
How many non-singleton sets are there? How many singleton sets?

3/4/2020 2

CS132 Lecture 13: Node.JS Lab

Helpful Relations

« For MYSQL we have precomputed 2 relations

o shared_disk(artist1,artist2)

= Entry if artist1 and artist2 are on the same disk
» CREATE TABLE shared_disk AS
» SELECT DISTINCT t1.artistid AS artist1, t2.artistid AS artist2
» FROM track t1, track t2
» WHERE t1.diskid = t2.diskid
» AND t1.artistid = t2.artistid;

o shared_song(artist1,artist2)
= Entry if artist1 and artist2 both recorded a song with the same name
» CREATE TABLE shared_song AS
> SELECT DISTINCT t1.artistid AS artist1, t2.artistid AS artist2
» FROM track t1, track t2
» WHERE t1.name =t2.name
» AND t1.artistid |= t2.artistid,;

3/6/2020 3

RA

CS132 Lecture 13: Node.JS Lab

Helpful Collections

« We created a sharedDisk collection in MongoDB
o _id : artist name key,
o value: object with related artist => count

N db.cds.mapReduce(mapshareddisk reducer out: “sharedDisk" J;

3/6/2020 4

CS132 Lecture 13: Node.JS Lab

Mechanics

« You should write a node.js program

o Input (artist name) can be
» Command line
« Internal constants (easy to change however) (var INPUT = “nsync”;)
« REPL (read-eval-print loop)
= From a web page

o Access the database as needed
« Both MongoDB and MySQL databases are available
= Determine which to use and install appropriate node.js modules

o Based on what relationship you choose

* Note there are about 1.5M artists total

o Probably some duplicates (might want to start with multiple)

 Plan your program before implementing it

3/4/2020 5

CS132 Lecture 13: Node.JS Lab

Database Access

 MongoDB
o mongodb://bdognom-v2.cs.brown.edu/cdquery
o Userid: cs132, Password: csci1320
o Collection: cds, sharedDisk
o npm install mongodb --save

- MySQL
o mysql://cs132:csci1320@bdognom-v2.cs.brown.edu/cdquery
o Tables: artist, disk, extended, track, words, shared_disk, shared_song

o npm install any-db-mysql --save
e There is also a 1% sample database available on both

o cdquery
o Will be faster for use in testing :: USE THIS FIRST

3/4/2020 6

CS132 Lecture 13: Node.JS Lab

Implementation Notes

« Main Routine:
o Given a set of artists, find all related artists

o This requires one or more database operations

o With SQL, might want to create a temporary relation of artists
Alternative: very long query

Create Table ArtistSet { artistid : char(12) }

Insert INTO Table ArtistSet Value (“...")

SELECT ? FROM ? WHERE ? AND artistid IN (SELECT * FROM ArtistSet)

« Then apply this routine

o To initial set

o To the new entries generated each time

3/4/2020 7

CS132 Lecture 13: Node.JS Lab

Designers

- Design & implement a web page for this assignment

o Explain the problem to the user

o Allow input of an artist

= Possibly search for artist and select a set of equivalent ones
o Check for artist validity (provide for this, don't do it)
o Provide output page showing results

o What else might you want
= Find popular artist not in set?

= Change relationship criteria

« Can team up with concentrators to produce a full application

3/4/2020 8

CS132 Lecture 13: Node.JS Lab

Next Time

« Mobile applications

3/4/2020 9

