/ ~ Turn on your video
if possible.

CS1320
Creating Modern Web and

Mobile Applications
Lecture 28

%

Lecture 28: Security |

Security is a big problem

IILJUSTCOS:;E?T |N THE R(,SH TO a&”
UP THE DEBIAN -OPENSSL
FIASCO, A NUMBER OF OTHER
MAJOR SECURITY HOLES
HAVE BEEN UNCOVERED: int get RandomNumber()
//MD _uvpdate(&m, buf; 3);
' AFFECTED * // chosen by fair dice roll.
o' SYSTEM____ SECURITY PROBLEN T Svarantess to be rondom
VULNERABLE. TO CERTAIN 3}
FEDORA CORE| HrCopDER RINGS
XANDROS GIVES ROGT ACCESS IF
/7 do_not_crash (); (eee Pc) ASKED IN STERN VOICE
O Q GENTOO VULNERABLE TO FLATTERY
; i) VULNERARLE TO "JEFF
OLPC OS5 GOLDBLUM'S POWERBOOK
/prevent_211(); GIVES ROOT A(CLESS IF USER
SLACKWARE | Save ELvisH WORD FOR “FRIEND'
TURNS OUT DISTRO 15
%:5 UBUNTU ACTUALLY JUST WINDOWS VISTA
WITH A FEW CUSTOM THEMES

4/9/20

Lecture 28: Security |

Security & Privacy Problems

Security Week

o securityweek.com

SC Magazine

O sCmagazine.com

CNET on Security

o www.cnet.com/topics/security

ThreatPost on Web Security

o https://threatpost.com/category/web-security

4/9/20 3

http://www.securityweek.com/
http://www.scmagazine.com/
http://www.cnet.com/topics/security
https://threatpost.com/category/web-security

Lecture 28: Security |

Security and Privacy

« Many web sites are developed initially without
taking these into account
“Your stolen identity has shown up on eBay.
What are the consequences? Do you want to bid on it?"

O

o We hear about security/privacy issues daily S—) 1nene
o Most exploits use well-understood techniques
o Most exploits could be avoided with a little care

« Optimizations

« Need to think about security and privacy
From the start

Design the web site with this in mind

Design the code with this in mind

Change the code with this in mind

o O O O

“Of course this website is safe. As an extra measure of security, they
make you sign in with your Social Security number, mother’s name,
your bank account, home address, phone number and date of birth.”

4/9/20 4

Lecture 28: Security |
Securlty iIs Fun e
. Co) BleD. 1o
« Creative thinking - outside the box - gq

« Think of all the ways of breaking software [||| (femen,
mmoﬁuw I '
o Other peoples -- not yours (areores..
7
e Thinl ﬁ'F \A/AN/Q ﬁ'F hrever\+:nm ciirh lf\ro':l/age ﬁ =
s e e UNLESS YOU'D RATHER
m READ THIS COMPUTER
OUR DEVICES 1 TURNED MANUAL.

ARE Now 100% THEM ALL

oFF. "
3
= L
ou
> o
Lixon
7

Dibert Dy Scolt Adams, repvinted Dy penmission of Unwed Foalures Syndicale, inc

“Information sccurity is a major priority at this company.
We've dome a bot of stupid things we'd like to keep secret,”

© D.Fletcher for Cl

Lecture 28: Security |

Obvious Problems

&7 FiND YoUR
LACK OF ENCRYPTION

« Not considering security in your application S
o Not requiring user authentication
o Allowing weak authentication
o Not encrypting sensitive communication m

o Sessions that don't time out #1 password

#2 123456

o Session ids that are guessable A et
#5 qwerty
o o #6 monke
Not putting in the resources needed [RAREL
#9 111111

O Ya hOO #10 baseball

4/9/20 6

Server Error in /' Application.

Lecture 28: Security | This is not good. Something bad happened.

an e recuset Pesse revew h0ut e e ang

Exception Detasks: Sywen txceston Tha m rel good Semetsng bad hagpened

Source Error:

[]
Line 21: sublic Actisntesalt About()
Line 221
Line 231 throw ne Exception("Tiis is mat geod, Sometiing bad happened.);
Line 34:
tine B
v

« Having a vulnerable server o weeeepg
o Not being at the latest patch level :
« Having bugs in the software = T
o Disclosing information inadvertently
o Exposing SQL and other errors
 Using vulnerable libraries
o NPM and GitHub now warn you
o But that is not enough
[J

Sending private information publically

4/9/20 7

Lecture 28: Security |

ySECURITY

conNSelTium

Semi-Obvious Problems

« Applications sharing a common back end

o PHP, Tomcat, ... have common code

o Applications can interfere with each other

« Phishing attacks

o Gain access through authorized user

o Gain access to authorized machine

e Loss of hardware

o Laptops get stolen or lost

4/9/20

Lecture 28: Security |

Non-Obvious Problems

« Assume we have secured our server and libraries,
validated our code, used best practices for data
encoding, etc.

o Are there still things that can go wrong?

* No system is ever totally secure

o You only hope is it more expensive to break

o Than the value gained from breaking it

4/9/20 9

Lecture 28: Security |

Web Security Issues

 Application security attacks SO Inscton CrosssiteScrptng
SQL injection attacks ‘
Cross-site scripting attacks

A |

Cross-site request forgery

@)
@)
O
o Code insertion attacks
O
@)
O

File name attacks A Lo L
Input Validation Error Handling Least Privilege
Buffer overflow attacks
X) Security Development Life Cycle
Timing attacks ... Policy, Standards and Best Practices (Coding Standards ..)

- Keeping information secret
o Passwords, Credit Cards, ...
o From whom and when?

4/9/20 10

Lecture 28: Security |

Security and Web Applications

« "All we can teach people about server-side programming in
a few hours is how to create security holes, even if we use
modern frameworks.”

« Think about security throughout the design

« Apply the principle of minimum access g
uuuuu Praventing .:cms Protect
o Holes in the software shouldn't -]
= Be able to harm anyone but the user invoking them [Ej» w“.‘::.m} | p— } -
= Give the user privileges they don’t need . ‘
g Authorizing Auditing and }
EELE logging act nerypting
o Restrict people’s permissions T e e

4/9/20 11

Lecture 28: Security |

SQL Injection Attacks

 Let user = user_id from the web page
o Authentication or just for information

Customers browser HackerTarget.com
generates request to everyone 1 a target
o o e Web Server asklng for
9 L /blcycles php |temd =2 Web Application

_ M May be a single host or multiple hosts
var g = “SELECT firstname
HTTP Request Web Server Database

FROM users — —
1 1nrn mnse (>
WHERE name =" + user + “'":

T Atta owser gen
var rslt = db.query(q); o ‘ e

item AND all customers
usernames and passwords

var msg = "Hello " + rslt[0].firstname;
/bicycles.php?itemid=2 u all select customer.username,customer.password,3,4,5 --

4/9/20

Lecture 28: Security |

SQL Injection Attacks ﬁﬂm‘w‘

* Input: user_id = spr
o SELECT firstname FROM users WHERE name = ‘spr’
o Put the result on the result page (Hello Steven)
* Input: user_id=x"or’1'="1
o SELECT firstname
o FROM users WHERE name = 'x" or "1’ ="1"

N\
\@

4/9/20 13

- Administrator Login :-

Usemame ‘vh" r1=1-

HI, THIS 1S

YOUR SON'S SCHOOL.
WERE HAVING SOME
(OMPUTER TROUBLE.

for

Lecture 28: Security |

SQL Injection Attacks

¢ What if the user passes in

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY -

=
il

DID YOU REALLY
NAME YOLR SON
Robert'); OROP
TABLE Shadents;-- 7

~OH.YES UTIE
WE CALL HIM.

WELL WEVE LOST THIS
YEAR'S STUDENT RECORDS.
T HOPE YOURE HAPPY.

AND I HPE
- YOUVE LEARNED

TO SANMZE YOUR

DATABAGE INPUTS,

x: DROP TABLE ‘users’; SELECT * from passwords WHERE ‘1’ = "1

SELECT firsthame FROM users where name = 'x’;
DROP TABLE ‘users’;
SELECT * FROM passwords WHERE 1" = "1°

o This needs to be explicitly enabled (don't)

e Pass in x' -- comment

« Pass in a query that takes a long time

4/9/20

Lecture 28: Security |

SQL Injection Attacks

e The attacker needs to know
o What the queries look like (the code)
o The structure of the underlying database

« Can you determine this?

o Yes - might take some time, but easy to do
o Recipes are on the web Tt e E— | b I

Analyze Pause
[Keyword: Auto Detect [Syntax: Auto Detect ¥z
= M

O TOOIS are avallable Database: Method: [GEI‘ v]Type: [AutoDetect v] S
J

Post Data:

$ (7 i 2 = S & > R
About Infa Tables Read Files Crnd Shell Query Find Admin MD5 Settings

Havij - Advanced SQL Injection Tool

4/9/20

Lecture 28: Security |

SQL Injection Attacks

e Aren't limited to SQL

« Can be used with mongo and other databases

o Any time a query is constructed dynamically using input text

Web Application

. ’ ..
o And the text isn't sanitized Attacker losn
w NosQL
o Use with Node might be safe o AA— e i
“““ A Possword "$ne"=>1
I JSON-base SQL Injection
* Node.JS, being a JSON based language, can unauthorized I
accept JSON values for the .find method: 2ccess
db.users.find({username: username, password: passuord});l Rp

* A user can bypass it by sending

4 CHECKMARX

4/9/20

Lecture 28: Security |

SQL Injection Attack Lesson

* Go to http://bdognom-v2.cs.brown.edu:5002
o SQL Injection Attack Lesson

o Try to login

= As any user; as administrator

o Try it with only setting the user, not the password

= Equivalent to password being hashed
o Try this for 5-10 minutes

o Raise (virtual) hand or thumbs up when done

4/9/20 17

http://bdognom-v2.cs.brown.edu:5002/

Lecture 28: Security |

SQL Injection Attacks

« Can do different malicious things based on query and
database system

 Used to

o email passwords to a different user
o Get field and table names for the database

o Find user names

o Password guessing

o Adding new users (super users)

4/9/20 18

Lecture 28: Security |

Avoiding SQL Attacks

 Validate all requests before sending to server
o Understand what data should look like

= User ids, product ids, email, ... have a given form

o Use JavaScript in the client to do the validation *1 SOL Ingecrion
' Attacks AnD Derense

o Is this sufficient?

4/9/20

Lecture 28: Security |

Avoiding SQL Attacks

 Validate the strings in the server

o Most back end languages have a function for this

o Check there are no funny characters

= E.g. check that there are no quotes in the string

= s this sufficient? =7 By
: =y
15 $0ute A Vel Date?

=

o It vor Or A Hacking At

» Value is a number Dt (mew)
1 DROP Tabde Datw; #

» Name is O'Reilly

» Unicode

o Check each string is in a standard form

= Is this sufficient?

4/9/20 20

Lecture 28: Security |

Avoiding SQL Attacks

« Don't allow multiple statement queries

e Use prepared statements
o SELECT firstname FROM USERS WHERE name = ?;

= Pass in array of values separately

o The substitution is handled by the database

= Done correctly even with quotes, odd characters, etc.
e This is basically sufficient

o Done automatically in RUBY, DJANGO, FLASK i
o This is what you should use I g > [BIND] > EXECUTE

4/9/20

21

Lecture 28: Security |

Avoiding SQL Attacks

« You will probably miss something however

« Make sure your database is relatively secure

o Grant permissions to tables only as needed
o Have separate database users for different roles
o Limit access to the web application itself

o Encrypt the database

o Principle of least access

4/9/20 22

Lecture 28: Security |

Next Time

 Security |l

4/9/20 23

Lecture 28: Security |

Homework

« What news stories did you find

o Did they tell you what went wrong?

4/9/20 24

Lecture 28: Security |

Question

4/9/20

A SQL injection attack involves

A.

B.

C.

A malicious user inputting text that is used in a prepared SQL query to
do malicious things.

A malicious user inputting text that is concatenated to form an
unexpected SQL operation.

A malicious user adding JavaScript code to the web page to create new
SQL operations in the back end.

A malicious user generating a XMLHttpRequest that cause the back end
to add information to the database.

A malicious user adding code to the web server to execute their own
SQL commands.

25

Lecture 28: Security |

Question

A cross-site scripting attack (XSS) can involve:

A. One web site using its cookies to infect another.

B. A malicious user inserting text into a blog causing another user to run
arbitrary JavaScript.

C. An IFRAME from one page accessing data from another page being
displayed in the browser.

D. A malicious user redirecting traffic from one site to a look-alike,

E. None of the above

4/9/20

26

