
Lecture 28

Security I

Turn on your video
if possible.

Lecture 28: Security I

Security is a big problem

4/9/20 2

Lecture 28: Security I

Security & Privacy Problems

• Security Week
o securityweek.com

• SC Magazine
o scmagazine.com

• CNET on Security
o www.cnet.com/topics/security

• ThreatPost on Web Security
o https://threatpost.com/category/web-security

4/9/20 3

http://www.securityweek.com/
http://www.scmagazine.com/
http://www.cnet.com/topics/security
https://threatpost.com/category/web-security

Lecture 28: Security I

Security and Privacy

• Many web sites are developed initially without
taking these into account
o What are the consequences?
o We hear about security/privacy issues daily
o Most exploits use well-understood techniques
o Most exploits could be avoided with a little care

• Optimizations
• Need to think about security and privacy

o From the start
o Design the web site with this in mind
o Design the code with this in mind
o Change the code with this in mind

4/9/20 4

Lecture 28: Security I

Security is Fun
• Creative thinking – outside the box
• Think of all the ways of breaking software

o Other peoples -- not yours

• Think of ways of preventing such breakage

4/9/20 5

Lecture 28: Security I

Obvious Problems

• Not considering security in your application
o Not requiring user authentication
o Allowing weak authentication
o Not encrypting sensitive communication
o Sessions that don’t time out
o Session ids that are guessable

• Not putting in the resources needed
o Yahoo

4/9/20 6

Lecture 28: Security I

Obvious Problems

• Having a vulnerable server
o Not being at the latest patch level

• Having bugs in the software
o Disclosing information inadvertently
o Exposing SQL and other errors

• Using vulnerable libraries
o NPM and GitHub now warn you
o But that is not enough

• Sending private information publically

4/9/20 7

Lecture 28: Security I

Semi-Obvious Problems

• Applications sharing a common back end
o PHP, Tomcat, … have common code
o Applications can interfere with each other

• Phishing attacks
o Gain access through authorized user
o Gain access to authorized machine

• Loss of hardware
o Laptops get stolen or lost

4/9/20 8

Lecture 28: Security I

Non-Obvious Problems

• Assume we have secured our server and libraries,
validated our code, used best practices for data
encoding, etc.
o Are there still things that can go wrong?

• No system is ever totally secure
o You only hope is it more expensive to break
o Than the value gained from breaking it

4/9/20 9

Lecture 28: Security I

Web Security Issues
• Application security attacks

o SQL injection attacks
o Cross-site scripting attacks
o Cross-site request forgery
o Code insertion attacks
o File name attacks
o Buffer overflow attacks
o Timing attacks …

• Keeping information secret
o Passwords, Credit Cards, …
o From whom and when?

4/9/20 10

Lecture 28: Security I

Security and Web Applications
• “All we can teach people about server-side programming in

a few hours is how to create security holes, even if we use
modern frameworks.”

• Think about security throughout the design
• Apply the principle of minimum access

o Holes in the software shouldn’t
▪ Be able to harm anyone but the user invoking them
▪ Give the user privileges they don’t need

o Restrict people’s permissions

4/9/20 11

Lecture 28: Security I

SQL Injection Attacks

• Let user = user_id from the web page
o Authentication or just for information

• Code
var q = “SELECT firstname
 FROM users
 WHERE name = ‘” + user + “’”;
var rslt = db.query(q);
var msg = “Hello “ + rslt[0].firstname;

4/9/20 12

Lecture 28: Security I

SQL Injection Attacks

• Input: user_id = spr
o SELECT firstname FROM users WHERE name = ‘spr’
o Put the result on the result page (Hello Steven)

• Input: user_id = x’ or ‘1’ = ‘1
o SELECT firstname
o FROM users WHERE name = ‘x’ or ‘1’ = ‘1’

4/9/20 13

Lecture 28: Security I

SQL Injection Attacks

• What if the user passes in
x’; DROP TABLE ‘users’; SELECT * from passwords WHERE ‘1’ = ‘1

 SELECT firstname FROM users where name = ‘x’;
 DROP TABLE ‘users’;
 SELECT * FROM passwords WHERE ‘1’ = ‘1’

o This needs to be explicitly enabled (don’t)

• Pass in x’ -- comment
• Pass in a query that takes a long time

4/9/20 14

Lecture 28: Security I

SQL Injection Attacks

• The attacker needs to know
o What the queries look like (the code)
o The structure of the underlying database

• Can you determine this?
o Yes – might take some time, but easy to do
o Recipes are on the web
o Tools are available

4/9/20 15

Lecture 28: Security I

SQL Injection Attacks

• Aren’t limited to SQL
• Can be used with mongo and other databases

o Any time a query is constructed dynamically using input text
o And the text isn’t sanitized
o Use with Node might be safe

4/9/20 16

Lecture 28: Security I

SQL Injection Attack Lesson

• Go to http://bdognom-v2.cs.brown.edu:5002
o SQL Injection Attack Lesson
o Try to log in

▪ As any user; as administrator

o Try it with only setting the user, not the password
▪ Equivalent to password being hashed

o Try this for 5-10 minutes
o Raise (virtual) hand or thumbs up when done

4/9/20 17

http://bdognom-v2.cs.brown.edu:5002/

Lecture 28: Security I

SQL Injection Attacks

• Can do different malicious things based on query and
database system

• Used to
o email passwords to a different user
o Get field and table names for the database
o Find user names
o Password guessing
o Adding new users (super users)

4/9/20 18

Lecture 28: Security I

Avoiding SQL Attacks

• Validate all requests before sending to server
o Understand what data should look like

▪ User ids, product ids, email, … have a given form

o Use JavaScript in the client to do the validation
o Is this sufficient?

4/9/20 19

Lecture 28: Security I

Avoiding SQL Attacks

• Validate the strings in the server
o Most back end languages have a function for this
o Check there are no funny characters

▪ E.g. check that there are no quotes in the string
▪ Is this sufficient?

» Value is a number
» Name is O’Reilly
» Unicode

o Check each string is in a standard form
▪ Is this sufficient?

4/9/20 20

Lecture 28: Security I

Avoiding SQL Attacks
• Don’t allow multiple statement queries
• Use prepared statements

o SELECT firstname FROM USERS WHERE name = ?;
▪ Pass in array of values separately

o The substitution is handled by the database
▪ Done correctly even with quotes, odd characters, etc.

• This is basically sufficient
o Done automatically in RUBY, DJANGO, FLASK
o This is what you should use

4/9/20 21

Lecture 28: Security I

Avoiding SQL Attacks

• You will probably miss something however
• Make sure your database is relatively secure

o Grant permissions to tables only as needed
o Have separate database users for different roles
o Limit access to the web application itself
o Encrypt the database
o Principle of least access

4/9/20 22

Lecture 28: Security I

Next Time

• Security II

4/9/20 23

Lecture 28: Security I

Homework

• What news stories did you find
o Did they tell you what went wrong?

4/9/20 24

Lecture 28: Security I

Question
A SQL injection attack involves

A. A malicious user inputting text that is used in a prepared SQL query to
do malicious things.

B. A malicious user inputting text that is concatenated to form an
unexpected SQL operation.

C. A malicious user adding JavaScript code to the web page to create new
SQL operations in the back end.

D. A malicious user generating a XMLHttpRequest that cause the back end
to add information to the database.

E. A malicious user adding code to the web server to execute their own
SQL commands.

4/9/20 25

Lecture 28: Security I

Question

A cross-site scripting attack (XSS) can involve:
A. One web site using its cookies to infect another.
B. A malicious user inserting text into a blog causing another user to run

arbitrary JavaScript.
C. An IFRAME from one page accessing data from another page being

displayed in the browser.
D. A malicious user redirecting traffic from one site to a look-alike,
E. None of the above

4/9/20 26

