
Lecture 29

Security II

CS132 Lecture 29: Security II

Review

• Security is a major concern
• Lots of obvious problems
• Lots of non-obvious problems

o SQL injection attacks are the most prevalent

• And there are others …
o These get more obscure, complex, difficult to address

4/10/20 2

Lecture 28: Security I

Code Insertion Attacks

• SQL queries aren’t the only place where web apps run
arbitrary user-providable code
o Php, JavaScript, Python have eval(…) statements
o Back end might run system commands (ls on a directory)

• These have the same vulnerabilities
o Solutions are similar (but no prepared statements)
o These should be avoided if at all possible

• DO NOT USE eval OR RUN SYSTEM COMMANDS

4/10/20 3

Lecture 28: Security I

File Naming Attacks
• Suppose your back end opens a particular file

o Based on the user name
▪ Image for user is /web/html/site/user_images/${user}

o What happens if I use the user name “../../../../etc/passwd”
o Or ”user/../../../../../etc/password”

• Solutions
o Validate the form of the name
o Don’t use names directly (look up image name in database)
o Restrict access to the file system

▪ chroot provides a virtual root (node.js accessible)
▪ php/java/tomcat/ruby security policies

4/10/20 4

Lecture 28: Security I

Cross Site Scripting Attacks

• The attacker inserts arbitrary HTML on your web page
o How can this ever happen?

▪ Reviews, feedback, wikis, …

o XSS

• What can go wrong
o Disrupt the page or the portion where inserted

4/10/20 5

Lecture 28: Security I

Cross Site Scripting

• What if the HTML include <script> tags?
o Replace the page with a new one

▪ Fake instance of a page to get passwords, accounts, etc.

o Pass information from the page to foreign page
▪ Cookies, passwords, credit card numbers, session ids

o Download user’s cookies (passwords) for other sites

• Inside a script, the code can do almost anything
o Effectively take over the browser, spy on the user, …

4/10/20 6

Lecture 28: Security I

Cross Site Scripting: How

• Suppose you allow user comments
o Guest book, ratings, wiki, postings, …
o Text from user is inserted into HTML

• Suppose instead of typing “I love this page”
“I love this page<script
 language=‘javascript’>document.location=‘http://bad/’;

</script>”

o What would happen?

4/10/20 7

Lecture 28: Security I

Cross Site Scripting Example

• Go to http://bdognom-v2.cs.brown.edu:5002
o Cross Site Scripting Attack Lesson
o Provide name to be used in next page

▪ Goal is to have it display the given alternative page

o Try this for 5-10 minutes
o Raise (virtual) hand or thumbs up when done
o Recall

▪ alert(“message”)
▪ doument.location=‘http://bad/’

4/12/20 8

http://bdognom-v2.cs.brown.edu:5002/

Lecture 28: Security I

Cross Site Scripting

• What can go wrong
o Reading data from URL (session id)
o Replace data in the URL
o Accessing/Replacing hidden form variables
o Loading foreign web page into a frame inside your page

▪ Using JavaScript to read and manipulate that frame
▪ Using code in the frame to monitor your activities

o Spying on everything the user does on the page

• Taking control of the browser

4/10/20 9

Lecture 28: Security I

Cross Site Scripting: Prevention
• Don’t allow any HTML to be inserted

o Back end libraries to strip out all HTML tags
o But this limits the user in some ways

• Don’t allow malicious HTML to be inserted
o Back end libraries to sanitize HTML

▪ Limited set of allowed tags for formatting

• Use something other than HTML
o Mark-up languages
o Map to html on output
o Still sanitize (don’t trust the input)

4/10/20 10

CS132 Lecture 29: Security II

Cross-Site Request Forgery
• Suppose user logs into banking application

o Cookies used to validate user/session
o Suppose there is a URL that transfers money

▪ transfer?from=checking&to=43434&amt=1000000.00

• Agent puts an ad on a different page
o Clicking on the ad, generates that URL

• What happens if user clicks on the ad
o While logged into banking application
o Back end can’t distinguish from real thing

4/10/20 11

CS132 Lecture 29: Security II

Cross-Site Request Forgery
• Use a random value for each request

o Set on previous request, kept in session
o Passed back as part of any request
o Validated by server before the action
o Effective URL will be different each time

▪ Can’t be spoofed by another client (easily)

• Can be passed to client in various ways
o Sent as part of html or XMLHttpRequest
o Included in a hidden form field
o Can also be put into header for use by JavaScript
o Packages exist to support this

4/10/20 12

CS132 Lecture 29: Security II

Server Attacks

• Inputs from web page attack the server directly
o Bugs in the web server

• Outside login to server
o Weak passwords, user ids
o Access from other machines

• Server becomes compromised
o Phishing attacks

4/10/20 13

CS132 Lecture 29: Security II

• Code:
void function(char* text) {

char buf[1000];
strcpy(buf,text);
// do some editing of buf
// save result

}

• Stack (high to low)
8888: <ptr to text>
8884: <return address>
8880: <old stack ptr>
7880: buf[0 .. 999]

Buffer Overflow Attack

4/10/20 14

CS132 Lecture 29: Security II

Preventing Buffer Overflow

• Use “safe” languages (Java, C#, JavaScript, …)
• Check sizes of data before putting in array

o Reads, copies, inputs
o Use safe functions (strncpy, snprintf, …)
o Safe programming – don’t cut corners

• Randomize code locations between runs
• Don’t let data pages be executable

4/10/20 15

CS132 Lecture 29: Security II

Server Attacks

• Can buffer overflow happen in Java? JavaScript? Php?
o Java/PHP/… security problems

▪ File access, exec, eval, …
▪ Internal bugs

• Even safe languages can have problems
o Out of memory
o Out of file space
o Run arbitrary code (malicious servlets)
o Tie up server for long time

4/13/20 16

CS132 Lecture 29: Security II

What Else Can Go Wrong?

• PEOPLE
• Denial of service
• Timing attacks …

4/10/20 17

CS132 Lecture 29: Security II

Security is Relative

• No application is totally secure
o Any app or system can be broken
o But you can control the cost to break it

• Make your application as secure as necessary
o Cost to break much greater than value of breaking it

4/10/20 18

CS132 Lecture 29: Security II

Next Time

• Security III (logging in)
• Privacy
• Testing

4/12/20 19

