CS 143 Linear Algebra Review

Stefan Roth

September 29, 2003

Introductory Remarks

- This review does not aim at mathematical rigor very much, but instead at ease of understanding and conciseness.
- Please see the course webpage on background material for links to further linear algebra material.

Stefan Roth

Overview

- Vectors in \mathbb{R}^n
- Scalar product
- Bases and transformations
- Inverse Transformations
- Eigendecomposition
- Singular Value Decomposition

Stefan Roth

Warm up: Vectors in \mathbb{R}^n

- We can think of vectors in two ways
 - As points in a multidimensional space with respect to some coordinate system
 - As a translation of a point in a multidimensional space, of the coordinate origin.

4

• Example in two dimensions (\mathbb{R}^2):

Stefan Roth

Vectors in \mathbb{R}^n (II)

• Notation:

$$\mathbf{x} \in \mathbb{R}^n, \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad \mathbf{x} = (x_1, x_2, \dots, x_n)$$

• We will skip some rather obvious things: Adding and subtracting of vectors, multiplication by a scalar, and simple properties of these operations.

Stefan Roth

Scalar Product

- A product of two vectors
- Amounts to projection of one vector onto the other
- Example in 2D:

The shown segment has length $\langle x,y\rangle$, if x and y are unit vectors.

Stefan Roth

Scalar Product (II)

7

- Various notations:
 - $\langle \mathbf{x}, \mathbf{y} \rangle$
 - xy
 - $x\;y$ or $x\cdot y$
- We will only use the first and second one!
- Other names: dot product, inner product

Stefan Roth

Scalar Product (III)

• Built on the following axioms:

$$\begin{array}{l} \langle \mathbf{x} + \mathbf{x}', \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}', \mathbf{y} \rangle \\ \text{- Linearity:} & \langle \mathbf{x}, \mathbf{y} + \mathbf{y}' \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{y}' \rangle \\ & \langle \lambda \mathbf{x}, \mathbf{y} \rangle = \lambda \langle \mathbf{x}, \mathbf{y} \rangle \\ & \langle \mathbf{x}, \lambda \mathbf{y} \rangle = \lambda \langle \mathbf{x}, \mathbf{y} \rangle \\ \text{- Symmetry:} & \langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle \end{array}$$

- Non-negativity:

$$\forall \mathbf{x} \neq 0 : \langle \mathbf{x}, \mathbf{x} \rangle > 0 \qquad \langle \mathbf{x}, \mathbf{x} \rangle = 0 \Leftrightarrow \mathbf{x} = 0$$

Stefan Roth

Scalar Product in \mathbb{R}^n

- Here: Euclidean space
- Definition:

$$\mathbf{x}, \mathbf{y} \in \mathbb{R}^n : \langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i \cdot y_i$$

• In terms of angles:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x}\| \cdot \|\mathbf{y}\| \cdot \cos(\angle(\mathbf{x}, \mathbf{y}))$$

• Other properties: commutative, associative, distributive

Stefan Roth

Norms on \mathbb{R}^n

Scalar product induces Euclidean norm (sometimes called 2-norm):

$$\|\mathbf{x}\| = \|\mathbf{x}\|_2 = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} = \sqrt{\sum_{i=1}^n x_i^2}$$

- The length of a vector is defined to be its (Euclidean) norm. A unit vector is one of length 1.
- Non-negativity properties also hold for the norm:
 - $\forall \mathbf{x} \neq 0: \|\mathbf{x}\|^2 > 0 \qquad \|\mathbf{x}\|^2 = 0 \Leftrightarrow \mathbf{x} = 0$

Stefan Roth

Bases and Transformations

We will look at:

- Linear dependence
- Bases
- Orthogonality
- Change of basis (Linear transformation)
- Matrices and matrix operations

Stefan Roth

Linear dependence

• Linear combination of vectors $\mathbf{x}_1, \ldots, \mathbf{x}_n$:

 $\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \dots + \alpha_n \mathbf{x}_n$

• A set of vectors $X = {\mathbf{x}_1, \dots, \mathbf{x}_n}$ is linearly dependant if $\mathbf{x}_i \in X$ can be written as a linear combination of the rest, $X \setminus {\mathbf{x}_i}$.

Stefan Roth

Linear dependence (II)

- Geometrically:
- In \mathbb{R}^n it holds that
 - a set of 2 to n vectors can be linearly dependant
 - sets of n+1 or more vectors are *always* linearly dependent

Stefan Roth

Bases

- A basis is a linearly independent set of vectors that spans the "whole space". we can write every vector in our space as linear combination of vectors in that set.
- Every set of n linearly independent vectors in \mathbb{R}^n is a basis of \mathbb{R}^n .
- Orthogonality: Two non-zero vectors ${\bf x}$ and ${\bf y}$ are orthogonal if $\langle {\bf x}, {\bf y} \rangle = 0.$
- A basis is called
 - *orthogonal*, if every basis vector is orthogonal to all other basis vectors
 - orthonormal, if additionally all basis vectors have length 1.

Stefan Roth

Bases (Examples in \mathbb{R}^2)

Stefan Roth

Bases continued

• Standard basis in \mathbb{R}^n (also called unit vectors):

$$\{\mathbf{e}_i \in \mathbb{R}^n : \mathbf{e}_i = (\underbrace{0, \dots, 0}_{i-1 \text{ times}}, 1, \underbrace{0, \dots, 0}_{n-i-1 \text{ times}})\}$$

• We can write a vector in terms of its standard basis,

$$\begin{pmatrix} 4\\7\\-3 \end{pmatrix} = 4 \cdot \mathbf{e}_1 + 7 \cdot \mathbf{e}_2 - 3 \cdot \mathbf{e}_3$$

• Important observation: $x_i = \langle \mathbf{e}_i, \mathbf{x} \rangle$, to find the coefficient for a particular basis vector, we project our vector onto it.

Stefan Roth

Change of basis

- Suppose we have a basis $B = {\mathbf{b}_1, \dots, \mathbf{b}_n}, \mathbf{b}_i \in \mathbb{R}^m$ and a vector $\mathbf{x} \in \mathbb{R}^m$ that we would like to represent in terms of B. Note that m and n can be equal, but don't have to.
- $\bullet\,$ To that end we project x onto all basis vectors:

$$ilde{\mathbf{x}} = egin{pmatrix} \langle \mathbf{b}_1, \mathbf{x}
angle \ \langle \mathbf{b}_2, \mathbf{x}
angle \ dots \ \mathbf{b}_2 \mathbf{x} \ dots \ \mathbf{b}_n \mathbf{x}
angle \end{bmatrix} = egin{pmatrix} \mathbf{b}_1 \mathbf{x} \ \mathbf{b}_2 \mathbf{x} \ dots \ dots \ \mathbf{b}_n \mathbf{x} \end{pmatrix}$$

Stefan Roth

Change of basis (Example)

Stefan Roth

Change of basis continued

• Let's rewrite the change of basis:

$$ilde{\mathbf{x}} = egin{pmatrix} \mathbf{b}_1 \mathbf{x} \\ \mathbf{b}_2 \mathbf{x} \\ dots \\ \mathbf{b}_2 \mathbf{x} \\ dots \\ \mathbf{b}_n \mathbf{x} \end{pmatrix} = egin{pmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ dots \\ dots \\ \mathbf{b}_n \end{pmatrix} \mathbf{x} = \mathbf{B} \mathbf{x}$$

- Voila, we got a $n \times m$ matrix **B** times a m-vector **x**!
- The matrix-vector product written out is thus:

$$\tilde{x}_i = (\mathbf{B}\mathbf{x})_i = \mathbf{b}_i \mathbf{x} = \sum_{j=1}^m b_{ij} x_j$$

Stefan Roth

Some properties

- Because of the linearity of the scalar product, this transformation is *linear* as well:
 - $\mathbf{B}(\lambda \cdot \mathbf{x}) = \lambda \cdot \mathbf{B}\mathbf{x}$
 - $\mathbf{B}(\mathbf{x} + \mathbf{y}) = \mathbf{B}\mathbf{x} + \mathbf{B}\mathbf{y}$
- The *identity* transformation / matrix maps a vector to itself:

$$\mathbf{I} = \begin{pmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \vdots \\ \mathbf{e}_n \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

Stefan Roth

Matrix Multiplication

• We can now also understand what a matrix-matrix multiplication is. Consider what happens when we change the basis first to *B* and then from there change the basis to *A*:

-
$$\hat{\mathbf{x}} = \mathbf{A}\mathbf{B}\mathbf{x} = \mathbf{A}(\mathbf{B}\mathbf{x}) = \mathbf{A}\tilde{\mathbf{x}}$$

 $\hat{\mathbf{x}}_i = (\mathbf{A}\tilde{\mathbf{x}})_i = \sum_{j=1}^n a_{ij}\tilde{x}_j = \sum_{j=1}^n a_{ij}\sum_{k=1}^m b_{jk}x_k$
 $= \sum_{k=1}^m \left(\sum_{j=1}^n a_{ij}b_{jk}\right)x_k = \sum_{k=1}^m (\mathbf{A}\mathbf{B})_{ik}x_k$
• Therefore $\mathbf{A} \cdot \mathbf{B} = \left(\sum_{j=1}^n a_{ij}b_{jk}\right)_{ik}$

Stefan Roth

More matrix properties

- The product of a $l \times n$ and a $n \times m$ matrix is a $l \times m$ matrix.
- The matrix product is associative, distributive, but *not commutative*.
- We will sometimes use the following rule: (AB) = BA
- Addition, subtraction, and multiplication by a scalar are defined much like for vectors. Matrices are associative, distributive, and commutative regarding these operations.

Stefan Roth

One more example - Rotation matrices

• Suppose we want to rotate a vector in \mathbb{R}^2 around the origin. This amounts to a change of basis, in which the basis vectors are rotated:

$$\mathbf{R} = \begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix}$$

Stefan Roth

Inverse Transformations - Overview

- Rank of a Matrix
- Inverse Matrix
- Some properties

Stefan Roth

Rank of a Matrix

• The rank of a matrix is the number of linearly independent rows or columns.

• Examples:
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 has rank 2, but $\begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix}$ only has rank 1.

- Equivalent to the dimension of the range of the linear transformation.
- A matrix with full rank is called *non-singular*, otherwise it is singular.

Stefan Roth

Inverse Matrix

- A linear transformation can only have an inverse, if the associated matrix is non-singular.
- The inverse A^{-1} of a matrix A is defined as:

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{I} \quad (= \mathbf{A}\mathbf{A}^{-1})$$

We cannot cover here, how the inverse is computed.
 Nevertheless, it is similar to solving ordinary linear equation systems.

Stefan Roth

Some properties

- Matrix multiplication $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$.
- For orthonormal matrices it holds that $A^{-1} = A$.
- For a diagonal matrix $\mathbf{D} = \{d_1, \dots, d_n\}$:

$$\mathbf{D}^{-1} = \{d_1^{-1}, \dots, d_n^{-1}\}$$

Stefan Roth

Determinants

- Determinants are a pretty complex topic; we will only cover basic properties.
- Definition ($\Pi(n)$ = Permutations of $\{1, \ldots, n\}$):

$$\det(\mathbf{A}) = \sum_{\pi \in \Pi(n)} (-1)^{|\pi|} \prod_{i=1}^{n} a_{i\pi(i)}$$

• Some properties:

-
$$det(\mathbf{A}) = 0$$
 iff \mathbf{A} is singular.
- $det(\mathbf{AB}) = det(\mathbf{A}) det(\mathbf{B}), \quad det(\mathbf{A}^{-1}) = det(\mathbf{A})^{-1}$
- $det(\lambda \mathbf{A}) = \lambda^n det(\mathbf{A})$

Stefan Roth

Eigendecomposition - Overview

- Eigenvalues and Eigenvectors
- How to compute them?
- Eigendecomposition

Stefan Roth

Eigenvalues and Eigenvectors

• All non-zero vectors ${f x}$ for which there is a $\lambda \in {\Bbb R}$ so that

 $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$

are called *eigenvectors* of A. λ are the associated *eigenvalues*.

- If e is an eigenvector of A, then also $c \cdot e$ with $c \neq 0$.
- Label eigenvalues $\lambda_1 \ge \lambda_1 \ge \cdots \ge \lambda_n$ with their eigenvectors $\mathbf{e}_1, \ldots, \mathbf{e}_n$ (assumed to be unit vectors).

Stefan Roth

How to compute them?

• Rewrite the definition as

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = 0$$

- $det(\mathbf{A} \lambda \mathbf{I}) = 0$ has to hold, because $\mathbf{A} \lambda \mathbf{I}$ cannot have full rank.
- This gives a polynomial in λ , the so-called *characteristic* polynomial.
- Find the eigenvalues by finding the roots of that polynomial.
- Find the associated eigenvector by solving linear equation system.

Stefan Roth

Eigendecomposition

• Every real, square, symmetric matrix A can be decomposed as:

$$\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V},$$

where ${\bf V}$ is an orthonormal matrix of ${\bf A}$'s eigenvectors and ${\bf D}$ is a diagonal matrix of the associated eigenvalues.

• The eigendecomposition is essentially a restricted variant of the Singular Value Decomposition.

Stefan Roth

Some properties

- The determinant of a square matrix is the product of its eigenvalues: $det(\mathbf{A}) = \lambda_1 \cdot \ldots \cdot \lambda_n$.
- A square matrix is singular if it has some eigenvalues of value 0.
- A square matrix \mathbf{A} is called positive (semi-)definite if all of its eigenvalues are positive (non-negative). Equivalent criterion: $\mathbf{x}\mathbf{A}\mathbf{x} > 0 \quad \forall \mathbf{x} \quad (\geq \text{if semi-definite}).$

Stefan Roth

Singular Value Decomposition (SVD)

• Suppose $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then a $\lambda \ge 0$ is called a *singular value* of \mathbf{A} , if there exist $\mathbf{u} \in \mathbb{R}^m$ and $\mathbf{v} \in \mathbb{R}^n$ such that

$$Av = \lambda u$$
 and $Au = \lambda v$

• We can decompose *any* matrix $\mathbf{A} \in \mathbb{R}^{m imes n}$ as

 $\mathbf{A} = \mathbf{U} \Sigma \mathbf{V},$

where $\mathbf{U} \in \mathbb{R}^{m \times m}$ and $\mathbf{V} \in \mathbb{R}^{n \times n}$ are orthonormal and Σ is a diagonal matrix of the singular values.

Stefan Roth

Relation to Eigendecomposition

- The columns of U are the eigenvectors of AA, and the (non-zero) singular values of A are the square roots of the (non-zero) eigenvalues of AA.
- If A ∈ ℝ^{m×n} (m << n) is a matrix of m i.i.d. samples from a n-dimensional Gaussian distribution, we can use the SVD of A to compute the eigenvectors and eigenvalues of the covariance matrix without building it explicitly.

Stefan Roth