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Introductory Remarks

e This review does not aim at mathematical rigor very much, but

instead at ease of understanding and conciseness.

e Please see the course webpage on background material for links
to further linear algebra material.
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Overview

e Vectorsin R”

e Scalar product

e Bases and transformations
e Inverse Transformations

e Eigendecomposition

e Singular Value Decomposition
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Warm up: Vectors in R"

e We can think of vectors in two ways

— As points in a multidimensional space with respect to some

coordinate system

— As a translation of a point in a multidimensional space, of the

coordinate origin.

e Example in two dimensions (R?):
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Vectors in R" (ll)

e Notation:
(1)
x € R", X = : X = (T1,%2,...,Tp)

v,

e We will skip some rather obvious things: Adding and subtracting

of vectors, multiplication by a scalar, and simple properties of

these operations.
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Scalar Product

e A product of two vectors
e Amounts to projection of one vector onto the other

e Example in 2D:

The shown segment has length (x, y), if X and y are unit vectors.
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Scalar Product (ll)

e \arious notations:
- <X7 y>

- Xyorx-y
e We will only use the first and second one!

e Other names: dot product, inner product
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Scalar Product (lll)

e Built on the following axioms:

x+xy)=(xy) +{,y)
ety (x,y+y) =Xy +xYy)
— Linearity:
(Ax,y) = AMx,y)
(x, \y) = AMx,y)
— Symmetry: (X,y) = (Y, X)

— Non-negativity:
Vx #£0: (x,x) >0 (x,x) =0 x=0
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Scalar Product in R"

e Here: Euclidean space

e Definition: i
x,y ER": (x,y) = Zil?z * Yi
i=1
e |n terms of angles:
(x,y) = [Ix[| - [[y[| - cos(£(x,¥))

e Other properties: commutative, associative, distributive
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Norms on R"

e Scalar product induces Euclidean norm (sometimes called

2-norm):

Ix[| = lixlla = v (x, %) = \ ZxQ

e The length of a vector is defined to be its (Euclidean) norm. A unit

vector is one of length 1.

e Non-negativity properties also hold for the norm:
Vx #0: ||x]|* >0 x| =0 x=0
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Bases and Transformations

We will look at:
e Linear dependence
e Bases
e QOrthogonality
e Change of basis (Linear transformation)

e Matrices and matrix operations
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Linear dependence
e Linear combination of vectors X1, ..., X,:
1X1 + Q9Xo + *++ + Xy,

e Asetofvectors X = {Xy,...,X,} is linearly dependant if

X; € X can be written as a linear combination of the rest,

X\ {x;}.
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Linear dependence (ll)

e Geometrically:

e In R" it holds that
— a set of 2 to n vectors can be linearly dependant

— sets of n 4+ 1 or more vectors are always linearly dependant
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Bases

e A basis is a linearly independent set of vectors that spans the
“whole space”. we can write every vector in our space as linear
combination of vectors in that set.

e Every set of n linearly independent vectors in R™ is a basis of R".

e Orthogonality: Two non-zero vectors X and y are orthogonal if
(x,y) =0.
e A basis is called

— orthogonal, if every basis vector is orthogonal to all other basis
vectors

— orthonormal, if additionally all basis vectors have length 1.
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Bases (Examples in R?)
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Bases continued

e Standard basis in R™ (also called unit vectors):

{e, €R" : ,=(0,...,0,1,0,...,0)}

\ . J/

WV WV
17— 1 times n—1—1 times

e \We can write a vector in terms of its standard basis,

[4)
\-3/

e Important observation: x; = (e;, X), to find the coefficient for a

:4-e1+7~eg—3-e3

particular basis vector, we project our vector onto it.
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Change of basis

e Suppose we have abasis B = {by,...,b,},b; € R™and a
vector X € R™ that we would like to represent in terms of B.

Note that . and n can be equal, but don’t have to.

e To that end we project X onto all basis vectors:

((br,x)\  [bix)
box

2

\<bn:, x) \b;x/
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Change of basis (Example)
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Change of basis continued

e |et’s rewrite the change of basis:
(i)
byx

2

(b1 )
b

2

bx) by

X = Bx

e \oila, we got a n X m matrix B times a m-vector x!

e [he matrix-vector product written out is thus:

CZ‘i = (BX)Z = bz'X = Zm bijil?j

j=1
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Some properties

e Because of the linearity of the scalar product, this transformation

IS linear as well:
-B(A-x) =) -Bx
- B(x+y) =Bx+ By

e The identity transformation / matrix maps a vector to itself:

o) (1 0 0)

) N0 0 1
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Matrix Multiplication

e We can now also understand what a matrix-matrix multiplication
is. Consider what happens when we change the basis first to 5
and then from there change the basis to A:

- x=ABx =A(Bx) = Ax

X, = (AX)Z.:E a;jTj = E awg birTk
71=1

1=1

S: ( Y Jk> Tk = Z(AB)ikl’k

k=1

e Therefore A - B = (22:1 Cbz'jbjk)
ik
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More matrix properties

The productof al X nand an X m matrix is a [ X m matrix.

The matrix product is associative, distributive, but not

commutative.
We will sometimes use the following rule: (AB) = BA

Addition, subtraction, and multiplication by a scalar are defined
much like for vectors. Matrices are associative, distributive, and

commutative regarding these operations.
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One more example - Rotation matrices

® Suppose we want to rotate a vector in R? around the origin. This
amounts to a change of basis, in which the basis vectors are

rotated:
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Inverse Transformations - Overview

e Rank of a Matrix
e [nverse Matrix

® Some properties
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Rank of a Matrix

e The rank of a matrix is the number of linearly independent rows or

columns.

1 1 2 1
e Examples: has rank 2, but only has rank 1.

0 1 4 2

e Equivalent to the dimension of the range of the linear

transformation.

e A matrix with full rank is called non-singular, otherwise it is

singular.
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Inverse Matrix

e A linear transformation can only have an inverse, if the associated

matrix is non-singular.

e The inverse A ! of a matrix A is defined as:
ATTA=T (=AAY

e We cannot cover here, how the inverse is computed.
Nevertheless, it is similar to solving ordinary linear equation

systems.
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Some properties

e Matrix multiplication (AB)~! = B~tA~1.
e For orthonormal matrices it holds that A~1 = A.

e For a diagonal matrix D = {dy,...,d,}:

D' ={d",....d,"}

Stefan Roth 27



Determinants

e Determinants are a pretty complex topic; we will only cover basic

properties.
e Definition (II(n) = Permutations of {1,...,n}):
det(A) = Z (—1)I™ Ham(i)
well(n) i=1

® Some properties:
— det(A) = 0iff A is singular.
— det(AB) = det(A)det(B),  det(A™!) =det(A)!
— det(AA) = A" det(A)
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Eigendecomposition - Overview

e Eigenvalues and Eigenvectors
e How to compute them?

e Eigendecomposition
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Eigenvalues and Eigenvectors

e All non-zero vectors X for which there is a A € R so that
Ax = )\x
are called eigenvectors of A. A are the associated eigenvalues.

e If e is an eigenvector of A, then also ¢ - e with ¢ 7é 0.

e Label eigenvalues Ay > Ay > --- > A, with their eigenvectors

ey, ..., e, (assumed to be unit vectors).
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How to compute them?

e Rewrite the definition as
(A—-A)x =0
e det(A — AI) = 0 has to hold, because A — AI cannot have full
rank.

e This gives a polynomial in A, the so-called characteristic

polynomial.
e Find the eigenvalues by finding the roots of that polynomial.

e Find the associated eigenvector by solving linear equation system.
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Eigendecomposition

e Every real, square, symmetric matrix A can be decomposed as:
A =VDV,

where V is an orthonormal matrix of A’s eigenvectors and D is a

diagonal matrix of the associated eigenvalues.

e The eigendecomposition is essentially a restricted variant of the

Singular Value Decomposition.
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Some properties

e The determinant of a square matrix is the product of its
eigenvalues: det(A) = A - ... A,

e A square matrix is singular if it has some eigenvalues of value 0.

e A square matrix A is called positive (semi-)definite if all of its
eigenvalues are positive (non-negative). Equivalent criterion:
xAx >0 Vx (> if semi-definite).
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Singular Value Decomposition (SVD)

e Suppose A € R™*"™, Thena A > 0 is called a singular value of
A if there existu € R™ and v € R" such that

Av = \u and Au = )\v

e We can decompose any matrix A € R™*" as
A =UXV,

where U € R™*™ and V € R"™"*™ are orthonormal and . is a

diagonal matrix of the singular values.
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Relation to Eigendecomposition

e The columns of U are the eigenvectors of A A, and the
(non-zero) singular values of A are the square roots of the

(non-zero) eigenvalues of A A.

o If A € R™*" (m << n)is amatrix of m i.i.d. samples from a
n-dimensional Gaussian distribution, we can use the SVD of A to
compute the eigenvectors and eigenvalues of the covariance

matrix without building it explicitly.
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