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Introductory Remarks

• This review does not aim at mathematical rigor very much, but

instead at ease of understanding and conciseness.

• Please see the course webpage on background material for links

to further linear algebra material.
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Overview

• Vectors in Rn

• Scalar product

• Bases and transformations

• Inverse Transformations

• Eigendecomposition

• Singular Value Decomposition
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Warm up: Vectors in Rn

• We can think of vectors in two ways

– As points in a multidimensional space with respect to some

coordinate system

– As a translation of a point in a multidimensional space, of the

coordinate origin.

• Example in two dimensions (R2):
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Vectors in Rn (II)

• Notation:

x ∈ Rn, x =


x1

x2

...

xn

 , x = (x1, x2, . . . , xn)

• We will skip some rather obvious things: Adding and subtracting

of vectors, multiplication by a scalar, and simple properties of

these operations.
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Scalar Product

• A product of two vectors

• Amounts to projection of one vector onto the other

• Example in 2D:

The shown segment has length 〈x,y〉, if x and y are unit vectors.
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Scalar Product (II)

• Various notations:

– 〈x,y〉
– xy

– x y or x · y

• We will only use the first and second one!

• Other names: dot product, inner product
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Scalar Product (III)

• Built on the following axioms:

– Linearity:

〈x + x′,y〉 = 〈x,y〉+ 〈x′,y〉

〈x,y + y′〉 = 〈x,y〉+ 〈x,y′〉

〈λx,y〉 = λ〈x,y〉

〈x, λy〉 = λ〈x,y〉
– Symmetry: 〈x,y〉 = 〈y,x〉
– Non-negativity:

∀x 6= 0 : 〈x,x〉 > 0 〈x,x〉 = 0⇔ x = 0
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Scalar Product in Rn

• Here: Euclidean space

• Definition:

x,y ∈ Rn : 〈x,y〉 =
n∑
i=1

xi · yi

• In terms of angles:

〈x,y〉 = ‖x‖ · ‖y‖ · cos(∠(x,y))

• Other properties: commutative, associative, distributive
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Norms on Rn

• Scalar product induces Euclidean norm (sometimes called

2-norm):

‖x‖ = ‖x‖2 =
√
〈x,x〉 =

√√√√ n∑
i=1

x2
i

• The length of a vector is defined to be its (Euclidean) norm. A unit

vector is one of length 1.

• Non-negativity properties also hold for the norm:

∀x 6= 0 : ‖x‖2 > 0 ‖x‖2 = 0⇔ x = 0
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Bases and Transformations

We will look at:

• Linear dependence

• Bases

• Orthogonality

• Change of basis (Linear transformation)

• Matrices and matrix operations
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Linear dependence

• Linear combination of vectors x1, . . . ,xn:

α1x1 + α2x2 + · · ·+ αnxn

• A set of vectors X = {x1, . . . ,xn} is linearly dependant if

xi ∈ X can be written as a linear combination of the rest,

X \ {xi}.
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Linear dependence (II)

• Geometrically:

• In Rn it holds that

– a set of 2 to n vectors can be linearly dependant

– sets of n+ 1 or more vectors are always linearly dependant
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Bases

• A basis is a linearly independent set of vectors that spans the

“whole space”. we can write every vector in our space as linear

combination of vectors in that set.

• Every set of n linearly independent vectors in Rn is a basis of Rn.

• Orthogonality : Two non-zero vectors x and y are orthogonal if

〈x,y〉 = 0.

• A basis is called

– orthogonal, if every basis vector is orthogonal to all other basis

vectors

– orthonormal, if additionally all basis vectors have length 1.
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Bases (Examples in R2)
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Bases continued

• Standard basis in Rn (also called unit vectors):

{ei ∈ Rn : ei = (0, . . . , 0︸ ︷︷ ︸
i−1 times

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i−1 times

)}

• We can write a vector in terms of its standard basis,
4

7

−3

 = 4 · e1 + 7 · e2 − 3 · e3

• Important observation: xi = 〈ei,x〉, to find the coefficient for a

particular basis vector, we project our vector onto it.
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Change of basis

• Suppose we have a basis B = {b1, . . . ,bn},bi ∈ Rm and a

vector x ∈ Rm that we would like to represent in terms of B.

Note that m and n can be equal, but don’t have to.

• To that end we project x onto all basis vectors:

x̃ =


〈b1,x〉

〈b2,x〉
...

〈bn,x〉

 =


b1x

b2x
...

bnx


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Change of basis (Example)
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Change of basis continued

• Let’s rewrite the change of basis:

x̃ =


b1x

b2x
...

bnx

 =


b1

b2

...

bn

x = Bx

• Voila, we got a n×m matrix B times a m-vector x!

• The matrix-vector product written out is thus:

x̃i = (Bx)i = bix =
∑m

j=1 bijxj
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Some properties

• Because of the linearity of the scalar product, this transformation

is linear as well:

– B(λ · x) = λ ·Bx

– B(x + y) = Bx + By

• The identity transformation / matrix maps a vector to itself:

I =


e1

e2

...

en

 =


1 0 · · · 0

0 1
. . .

...
...

. . . . . . 0

0 · · · 0 1


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Matrix Multiplication

• We can now also understand what a matrix-matrix multiplication

is. Consider what happens when we change the basis first to B

and then from there change the basis to A:

– x̂ = ABx = A(Bx) = Ax̃

x̂i = (Ax̃)i =
n∑
j=1

aijx̃j =
n∑
j=1

aij

m∑
k=1

bjkxk

=
m∑
k=1

(
n∑
j=1

aijbjk

)
xk =

m∑
k=1

(AB)ikxk

• Therefore A ·B =
(∑n

j=1 aijbjk

)
ik

Stefan Roth 21



More matrix properties

• The product of a l × n and a n×m matrix is a l ×m matrix.

• The matrix product is associative, distributive, but not

commutative.

• We will sometimes use the following rule: (AB) = BA

• Addition, subtraction, and multiplication by a scalar are defined

much like for vectors. Matrices are associative, distributive, and

commutative regarding these operations.
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One more example - Rotation matrices

• Suppose we want to rotate a vector in R2 around the origin. This

amounts to a change of basis, in which the basis vectors are

rotated:

R =

cosφ − sinφ

sinφ cosφ


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Inverse Transformations - Overview

• Rank of a Matrix

• Inverse Matrix

• Some properties

Stefan Roth 24



Rank of a Matrix

• The rank of a matrix is the number of linearly independent rows or

columns.

• Examples:

1 1

0 1

 has rank 2, but

2 1

4 2

 only has rank 1.

• Equivalent to the dimension of the range of the linear

transformation.

• A matrix with full rank is called non-singular, otherwise it is

singular.
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Inverse Matrix

• A linear transformation can only have an inverse, if the associated

matrix is non-singular.

• The inverse A−1 of a matrix A is defined as:

A−1A = I
(
= AA−1

)
• We cannot cover here, how the inverse is computed.

Nevertheless, it is similar to solving ordinary linear equation

systems.
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Some properties

• Matrix multiplication (AB)−1 = B−1A−1.

• For orthonormal matrices it holds that A−1 = A.

• For a diagonal matrix D = {d1, . . . , dn}:

D−1 = {d−1
1 , . . . , d−1

n }
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Determinants

• Determinants are a pretty complex topic; we will only cover basic

properties.

• Definition (Π(n) = Permutations of {1, . . . , n}):

det(A) =
∑

π∈Π(n)

(−1)|π|
n∏
i=1

aiπ(i)

• Some properties:

– det(A) = 0 iff A is singular.

– det(AB) = det(A) det(B), det(A−1) = det(A)−1

– det(λA) = λn det(A)
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Eigendecomposition - Overview

• Eigenvalues and Eigenvectors

• How to compute them?

• Eigendecomposition
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Eigenvalues and Eigenvectors

• All non-zero vectors x for which there is a λ ∈ R so that

Ax = λx

are called eigenvectors of A. λ are the associated eigenvalues.

• If e is an eigenvector of A, then also c · e with c 6= 0.

• Label eigenvalues λ1 ≥ λ1 ≥ · · · ≥ λn with their eigenvectors

e1, . . . , en (assumed to be unit vectors).
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How to compute them?

• Rewrite the definition as

(A− λI)x = 0

• det(A− λI) = 0 has to hold, because A− λI cannot have full

rank.

• This gives a polynomial in λ, the so-called characteristic

polynomial.

• Find the eigenvalues by finding the roots of that polynomial.

• Find the associated eigenvector by solving linear equation system.
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Eigendecomposition

• Every real, square, symmetric matrix A can be decomposed as:

A = VDV,

where V is an orthonormal matrix of A’s eigenvectors and D is a

diagonal matrix of the associated eigenvalues.

• The eigendecomposition is essentially a restricted variant of the

Singular Value Decomposition.
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Some properties

• The determinant of a square matrix is the product of its

eigenvalues: det(A) = λ1 · . . . · λn.

• A square matrix is singular if it has some eigenvalues of value 0.

• A square matrix A is called positive (semi-)definite if all of its

eigenvalues are positive (non-negative). Equivalent criterion:

xAx > 0 ∀x (≥ if semi-definite).
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Singular Value Decomposition (SVD)

• Suppose A ∈ Rm×n. Then a λ ≥ 0 is called a singular value of

A, if there exist u ∈ Rm and v ∈ Rn such that

Av = λu and Au = λv

• We can decompose any matrix A ∈ Rm×n as

A = UΣV,

where U ∈ Rm×m and V ∈ Rn×n are orthonormal and Σ is a

diagonal matrix of the singular values.
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Relation to Eigendecomposition

• The columns of U are the eigenvectors of AA, and the

(non-zero) singular values of A are the square roots of the

(non-zero) eigenvalues of AA.

• If A ∈ Rm×n (m << n) is a matrix of m i.i.d. samples from a

n-dimensional Gaussian distribution, we can use the SVD of A to

compute the eigenvectors and eigenvalues of the covariance

matrix without building it explicitly.
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