CS 143 Linear Algebra Review

Stefan Roth

September 29, 2003

Introductory Remarks

- This review does not aim at mathematical rigor very much, but instead at ease of understanding and conciseness.
- Please see the course webpage on background material for links to further linear algebra material.

Overview

- Vectors in \mathbb{R}^{n}
- Scalar product
- Bases and transformations
- Inverse Transformations
- Eigendecomposition
- Singular Value Decomposition

Warm up: Vectors in \mathbb{R}^{n}

- We can think of vectors in two ways
- As points in a multidimensional space with respect to some coordinate system
- As a translation of a point in a multidimensional space, of the coordinate origin.
- Example in two dimensions $\left(\mathbb{R}^{2}\right)$:

Vectors in \mathbb{R}^{n} (II)

- Notation:

$$
\mathbf{x} \in \mathbb{R}^{n}, \quad \mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \quad \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

- We will skip some rather obvious things: Adding and subtracting of vectors, multiplication by a scalar, and simple properties of these operations.

Scalar Product

- A product of two vectors
- Amounts to projection of one vector onto the other
- Example in 2D:

The shown segment has length $\langle\mathbf{x}, \mathbf{y}\rangle$, if \mathbf{x} and \mathbf{y} are unit vectors

Scalar Product (II)

- Various notations:
$-\langle\mathbf{x}, \mathbf{y}\rangle$
- xy
- $\mathbf{x} \mathbf{y}$ or $\mathbf{x} \cdot \mathbf{y}$
- We will only use the first and second one!
- Other names: dot product, inner product

Scalar Product (III)

- Built on the following axioms:

$$
\begin{gathered}
\left\langle\mathbf{x}+\mathbf{x}^{\prime}, \mathbf{y}\right\rangle=\langle\mathbf{x}, \mathbf{y}\rangle+\left\langle\mathbf{x}^{\prime}, \mathbf{y}\right\rangle \\
\left\langle\mathbf{x}, \mathbf{y}+\mathbf{y}^{\prime}\right\rangle=\langle\mathbf{x}, \mathbf{y}\rangle+\left\langle\mathbf{x}, \mathbf{y}^{\prime}\right\rangle \\
\langle\lambda \mathbf{x}, \mathbf{y}\rangle=\lambda\langle\mathbf{x}, \mathbf{y}\rangle \\
\langle\mathbf{x}, \lambda \mathbf{y}\rangle=\lambda\langle\mathbf{x}, \mathbf{y}\rangle
\end{gathered}
$$

- Symmetry: $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$
- Non-negativity:

$$
\forall \mathbf{x} \neq 0:\langle\mathbf{x}, \mathbf{x}\rangle>0 \quad\langle\mathbf{x}, \mathbf{x}\rangle=0 \Leftrightarrow \mathbf{x}=0
$$

Scalar Product in \mathbb{R}^{n}

- Here: Euclidean space
- Definition:

$$
\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}:\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i=1}^{n} x_{i} \cdot y_{i}
$$

- In terms of angles:

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\|\mathbf{x}\| \cdot\|\mathbf{y}\| \cdot \cos (\angle(\mathbf{x}, \mathbf{y}))
$$

- Other properties: commutative, associative, distributive

Norms on \mathbb{R}^{n}

- Scalar product induces Euclidean norm (sometimes called

2-norm):

$$
\|\mathbf{x}\|=\|\mathbf{x}\|_{2}=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

- The length of a vector is defined to be its (Euclidean) norm. A unit vector is one of length 1.
- Non-negativity properties also hold for the norm:

$$
\forall \mathbf{x} \neq 0:\|\mathbf{x}\|^{2}>0 \quad \quad\|\mathbf{x}\|^{2}=0 \Leftrightarrow \mathbf{x}=0
$$

Bases and Transformations

We will look at:

- Linear dependence
- Bases
- Orthogonality
- Change of basis (Linear transformation)
- Matrices and matrix operations

Linear dependence

- Linear combination of vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$:

$$
\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}+\cdots+\alpha_{n} \mathbf{x}_{n}
$$

- A set of vectors $X=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ is linearly dependant if
$\mathbf{x}_{i} \in X$ can be written as a linear combination of the rest, $X \backslash\left\{\mathbf{x}_{i}\right\}$.

Linear dependence (II)

- Geometrically:
- In \mathbb{R}^{n} it holds that
- a set of 2 to n vectors can be linearly dependant
- sets of $n+1$ or more vectors are always linearly dependant

Bases

- A basis is a linearly independent set of vectors that spans the "whole space". we can write every vector in our space as linear combination of vectors in that set.
- Every set of n linearly independent vectors in \mathbb{R}^{n} is a basis of \mathbb{R}^{n}.
- Orthogonality: Two non-zero vectors \mathbf{x} and \mathbf{y} are orthogonal if $\langle\mathbf{x}, \mathbf{y}\rangle=0$.
- A basis is called
- orthogonal, if every basis vector is orthogonal to all other basis vectors
- orthonormal, if additionally all basis vectors have length 1.

Bases (Examples in \mathbb{R}^{2})

Bases continued

- Standard basis in \mathbb{R}^{n} (also called unit vectors):

$$
\{\mathbf{e}_{i} \in \mathbb{R}^{n}: \mathbf{e}_{i}=(\underbrace{0, \ldots, 0}_{i-1 \text { times }}, 1, \underbrace{0, \ldots, 0}_{n-i-1 \text { times }})\}
$$

- We can write a vector in terms of its standard basis,

$$
\left(\begin{array}{c}
4 \\
7 \\
-3
\end{array}\right)=4 \cdot \mathbf{e}_{1}+7 \cdot \mathbf{e}_{2}-3 \cdot \mathbf{e}_{3}
$$

- Important observation: $x_{i}=\left\langle\mathbf{e}_{i}, \mathbf{x}\right\rangle$, to find the coefficient for a particular basis vector, we project our vector onto it.

Change of basis

- Suppose we have a basis $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}, \mathbf{b}_{i} \in \mathbb{R}^{m}$ and a
vector $\mathbf{x} \in \mathbb{R}^{m}$ that we would like to represent in terms of B.
Note that m and n can be equal, but don't have to.
- To that end we project \mathbf{x} onto all basis vectors:

$$
\tilde{\mathbf{x}}=\left(\begin{array}{c}
\left\langle\mathbf{b}_{1}, \mathbf{x}\right\rangle \\
\left\langle\mathbf{b}_{2}, \mathbf{x}\right\rangle \\
\vdots \\
\left\langle\mathbf{b}_{n}, \mathbf{x}\right\rangle
\end{array}\right)=\left(\begin{array}{c}
\mathbf{b}_{1} \mathbf{x} \\
\mathbf{b}_{2} \mathbf{x} \\
\vdots \\
\mathbf{b}_{n} \mathbf{x}
\end{array}\right)
$$

Change of basis (Example)

Change of basis continued

- Let's rewrite the change of basis:

$$
\tilde{\mathrm{x}}=\left(\begin{array}{c}
\mathrm{b}_{1} \mathrm{x} \\
\mathrm{~b}_{2} \mathrm{x} \\
\vdots \\
\mathrm{~b}_{n} \mathrm{x}
\end{array}\right)=\left(\begin{array}{c}
\mathrm{b}_{1} \\
\mathrm{~b}_{2} \\
\vdots \\
\mathbf{b}_{n}
\end{array}\right) \mathrm{x}=\mathrm{Bx}
$$

- Voila, we got a $n \times m$ matrix \mathbf{B} times a m-vector \mathbf{x} !
- The matrix-vector product written out is thus:

$$
\tilde{x}_{i}=(\mathbf{B x})_{i}=\mathbf{b}_{i} \mathbf{x}=\sum_{j=1}^{m} b_{i j} x_{j}
$$

Some properties

- Because of the linearity of the scalar product, this transformation
is linear as well:
$-\mathbf{B}(\lambda \cdot \mathbf{x})=\lambda \cdot \mathbf{B} \mathbf{x}$
$-B(x+y)=B x+B y$
- The identity transformation / matrix maps a vector to itself:

$$
\mathbf{I}=\left(\begin{array}{c}
\mathbf{e}_{1} \\
\mathbf{e}_{2} \\
\vdots \\
\mathbf{e}_{n}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 1
\end{array}\right)
$$

Matrix Multiplication

- We can now also understand what a matrix-matrix multiplication is. Consider what happens when we change the basis first to B and then from there change the basis to A :
$-\hat{\mathbf{x}}=\mathbf{A B x}=\mathbf{A}(\mathbf{B x})=\mathbf{A} \tilde{\mathbf{x}}$

$$
\begin{aligned}
\hat{\mathbf{x}}_{i} & =(\mathbf{A} \tilde{\mathbf{x}})_{i}=\sum_{j=1}^{n} a_{i j} \tilde{x}_{j}=\sum_{j=1}^{n} a_{i j} \sum_{k=1}^{m} b_{j k} x_{k} \\
& =\sum_{k=1}^{m}\left(\sum_{j=1}^{n} a_{i j} b_{j k}\right) x_{k}=\sum_{k=1}^{m}(\mathbf{A B})_{i k} x_{k}
\end{aligned}
$$

- Therefore $\mathbf{A} \cdot \mathbf{B}=\left(\sum_{j=1}^{n} a_{i j} b_{j k}\right)_{i k}$

More matrix properties

- The product of a $l \times n$ and a $n \times m$ matrix is a $l \times m$ matrix.
- The matrix product is associative, distributive, but not commutative.
- We will sometimes use the following rule: $(\mathrm{AB})=\mathrm{BA}$
- Addition, subtraction, and multiplication by a scalar are defined much like for vectors. Matrices are associative, distributive, and commutative regarding these operations.

One more example - Rotation matrices

- Suppose we want to rotate a vector in \mathbb{R}^{2} around the origin. This amounts to a change of basis, in which the basis vectors are rotated:

$$
\mathbf{R}=\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)
$$

Inverse Transformations - Overview

- Rank of a Matrix
- Inverse Matrix
- Some properties

Rank of a Matrix

- The rank of a matrix is the number of linearly independent rows or columns.
- Examples: $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ has rank 2, but $\left(\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right)$ only has rank 1.
- Equivalent to the dimension of the range of the linear transformation.
- A matrix with full rank is called non-singular, otherwise it is singular.

Inverse Matrix

- A linear transformation can only have an inverse, if the associated matrix is non-singular.
- The inverse \mathbf{A}^{-1} of a matrix \mathbf{A} is defined as:

$$
\mathbf{A}^{-1} \mathbf{A}=\mathbf{I} \quad\left(=\mathbf{A} \mathbf{A}^{-1}\right)
$$

- We cannot cover here, how the inverse is computed.

Nevertheless, it is similar to solving ordinary linear equation systems.

Some properties

- Matrix multiplication $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$.
- For orthonormal matrices it holds that $\mathbf{A}^{-1}=\mathbf{A}$.
- For a diagonal matrix $\mathbf{D}=\left\{d_{1}, \ldots, d_{n}\right\}$:

$$
\mathbf{D}^{-1}=\left\{d_{1}^{-1}, \ldots, d_{n}^{-1}\right\}
$$

Determinants

- Determinants are a pretty complex topic; we will only cover basic properties.
- Definition $(\Pi(n)=$ Permutations of $\{1, \ldots, n\})$:

$$
\operatorname{det}(\mathbf{A})=\sum_{\pi \in \Pi(n)}(-1)^{|\pi|} \prod_{i=1}^{n} a_{i \pi(i)}
$$

- Some properties:
$-\operatorname{det}(\mathbf{A})=0$ iff \mathbf{A} is singular.
$-\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B}), \quad \operatorname{det}\left(\mathbf{A}^{-1}\right)=\operatorname{det}(\mathbf{A})^{-1}$
$-\operatorname{det}(\lambda \mathbf{A})=\lambda^{n} \operatorname{det}(\mathbf{A})$

Eigendecomposition-Overview

- Eigenvalues and Eigenvectors
- How to compute them?
- Eigendecomposition

Eigenvalues and Eigenvectors

- All non-zero vectors \mathbf{x} for which there is a $\lambda \in \mathbb{R}$ so that

$$
\mathbf{A} \mathbf{x}=\lambda \mathbf{x}
$$

are called eigenvectors of $\mathbf{A} . \lambda$ are the associated eigenvalues.

- If \mathbf{e} is an eigenvector of \mathbf{A}, then also $c \cdot \mathbf{e}$ with $c \neq 0$.
- Label eigenvalues $\lambda_{1} \geq \lambda_{1} \geq \cdots \geq \lambda_{n}$ with their eigenvectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ (assumed to be unit vectors).

How to compute them?

- Rewrite the definition as

$$
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=0
$$

- $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$ has to hold, because $\mathbf{A}-\lambda \mathbf{I}$ cannot have full rank.
- This gives a polynomial in λ, the so-called characteristic polynomial.
- Find the eigenvalues by finding the roots of that polynomial.
- Find the associated eigenvector by solving linear equation system.

Eigendecomposition

- Every real, square, symmetric matrix A can be decomposed as:

$$
\mathbf{A}=\mathbf{V D V}
$$

where \mathbf{V} is an orthonormal matrix of A's eigenvectors and \mathbf{D} is a diagonal matrix of the associated eigenvalues.

- The eigendecomposition is essentially a restricted variant of the Singular Value Decomposition.

Some properties

- The determinant of a square matrix is the product of its eigenvalues: $\operatorname{det}(\mathbf{A})=\lambda_{1} \cdot \ldots \cdot \lambda_{n}$.
- A square matrix is singular if it has some eigenvalues of value 0 .
- A square matrix \mathbf{A} is called positive (semi-)definite if all of its eigenvalues are positive (non-negative). Equivalent criterion:
$\mathbf{x A x}>0 \quad \forall \mathrm{x} \quad(\geq$ if semi-definite).

Singular Value Decomposition (SVD)

- Suppose $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then a $\lambda \geq 0$ is called a singular value of
\mathbf{A}, if there exist $\mathbf{u} \in \mathbb{R}^{m}$ and $\mathbf{v} \in \mathbb{R}^{n}$ such that

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{u} \quad \text { and } \quad \mathbf{A} \mathbf{u}=\lambda \mathbf{v}
$$

- We can decompose any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ as

$$
\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}
$$

where $\mathbf{U} \in \mathbb{R}^{m \times m}$ and $\mathbf{V} \in \mathbb{R}^{n \times n}$ are orthonormal and Σ is a diagonal matrix of the singular values.

Relation to Eigendecomposition

- The columns of \mathbf{U} are the eigenvectors of $\mathbf{A} \mathbf{A}$, and the (non-zero) singular values of \mathbf{A} are the square roots of the (non-zero) eigenvalues of AA.
- If $\mathbf{A} \in \mathbb{R}^{m \times n}(m \ll n)$ is a matrix of m i.i.d. samples from a n-dimensional Gaussian distribution, we can use the SVD of \mathbf{A} to compute the eigenvectors and eigenvalues of the covariance matrix without building it explicitly.

