Introduction to Computer Vision

Michael J. Black

Oct. 2009

Lecture 11:

Images as vectors.
Sub-space methods.

Goals

- Images as vectors in a high dimensional space
- Subspace methods (eigen analysis)
- Covariance and principal component analysis

Search and Recognition

1. How can we find the mouth?
2. How can we recognize the "expression"?

Naïve Appearance-Based Approach

Database of mouth "templates"

Appearance-Based Methods

Represent objects by their appearance in an ensemble of images, including different poses, illuminants, configurations of shape, ...

Approaches covered here:

- Subspace (eigen) Methods
- Local Invariant Image Features

Images as Vectors

,

e.g. standard lexicographic ordering

Images as Points

SSD Matching

- An alternative to correlation is to minimize the Sum of Squared Differences (SSD)

$$
E\left(p_{1}, p_{2}\right)=\sum_{i=1: n}\left(p_{1}(i)-p_{2}(i)\right)^{2}
$$

- Distance metric.
- Euclidean distance $=\operatorname{sqrt}(\mathrm{E})$

Template Methods

Image templates (simplest view-based method - straw man)

- keep an image of every object from different viewing directions, lighting conditions, etc.
- nearest neighbor cross-correlation matching with images in model database (or robust matching for clutter \& occlusion)

Obvious problems:

- storage and computation costs become unreasonable as the number of objects increases
- may require very large ensemble of 'training' images

Subspace Methods

How can we find more efficient representations for the ensemble of views, and more efficient methods for matching?

- Idea: images are not random... especially images of the same object that have similar appearance

E.g., let images be represented as points in a high-dimensional space (e.g., one dimension per pixel)

Linear Dimension Reduction

Given that differences are structured, we can use 'basis images' to transform images into other images in the same space.

Linear Dimension Reduction

Approach

- Find a lower dimensional representation that captures the variability in the data.
- Search using this low dimensional model.

Goal

$\begin{array}{cc}\text { Data point } n & \text { Low dim representation: } \\ \vec{X}^{n} \in \mathfrak{R}^{D} & \vec{Z}^{n} \in \mathfrak{R}^{M} \quad M \ll D\end{array}$

Map $\quad \vec{x}^{n} \rightarrow \vec{z}^{n}$

Observation

I can always write a vector as:

Kronecker delta $=1$ if $i=j, 0$ otherwise.

$$
\vec{x}=\sum_{i=1}^{D} a_{i} \vec{u}_{i} \quad \text { where } \vec{u}_{i}^{T} \vec{u}_{j}=\delta_{i j}
$$

Example:

$$
\left[\begin{array}{l}
3 \\
7
\end{array}\right]=3\left[\begin{array}{l}
1 \\
0
\end{array}\right]+7\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Observation

$$
\begin{aligned}
\vec{x} & =a_{1} \vec{u}_{1}+a_{2} \vec{u}_{2} \\
a_{1} & =\vec{u}_{1}^{T}\left(\vec{x}-a_{2} \vec{u}_{2}\right) \\
& =\vec{u}_{1}^{T} \stackrel{\rightharpoonup}{x}-a_{2} \vec{u}_{1}^{T} \vec{u}_{2} \\
& =\vec{u}_{1}^{T} \stackrel{\rightharpoonup}{x}
\end{aligned}
$$

Projection

More generally

Scalar coefficient
projection

Observation

Want the M bases that minimize the mean squared error over the training data

$$
\min E_{M}=\sum_{n=1}^{N}\left\|\stackrel{\rightharpoonup}{x}^{n}-\widetilde{x}^{n}\right\|^{2}
$$

Simple 2D example

If I give you the mean and one vector to represent the data, what vector would you choose?
Why?

Simple 2D example

$$
\vec{x}^{n} \approx \bar{x}+a \vec{u}
$$

Mouths

$$
x=k_{1} x^{x^{2}}-\bar{x}^{\prime} \text { 日回 }
$$

Statistics Review

Sample Mean

$$
\bar{x}=\langle x\rangle=\frac{1}{N} \sum_{i=1}^{N} \vec{x}^{i}
$$

Sample Variance

$$
\sigma^{2}=\left\langle(x-\bar{x})^{2}\right\rangle=\operatorname{var}(\bar{x})=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}
$$

Statistics Review

Multiple variables: covariance.

$$
\begin{aligned}
\operatorname{cov}(x, y) & =\sigma_{x y}=\langle(x-\bar{x})(y-\bar{y})\rangle \\
& =\langle x y\rangle-\langle x\rangle\langle\bar{y}\rangle-\langle y\rangle\langle\bar{x}\rangle+\langle x\rangle\langle y\rangle \\
& =\langle x y\rangle-\langle x\rangle\langle y\rangle-\langle y\rangle\langle x\rangle+\langle x\rangle\langle y\rangle \\
& =\langle x y\rangle-\langle x\rangle\langle y\rangle
\end{aligned}
$$

Special case: variance.

$$
\operatorname{cov}(x, x)=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}=\sigma_{x}^{2}
$$

Statistical Correlation

The covariance of two random variables X and Y provides a measure of how strongly correlated these variables are, and the derived quantity

$$
\operatorname{cor}(x, y)=\frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{y}}
$$

(Same as correlation coefficient, r, defined earlier.)

Statistical Correlation

$$
\begin{gathered}
\operatorname{cor}(x, y)=\frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{y}} \\
r=\frac{\sum_{k, l}(f(k, l)-\bar{f})(g(k, l)-\bar{g})}{\sqrt{\left(\sum_{k, l}(f(k, l)-\bar{f})^{2}\right)\left(\sum_{k, l}(g(k, l)-\bar{g})^{2}\right)}}
\end{gathered}
$$

Covariance Matrix

For two random variables x and y we have

$$
\begin{gathered}
C=\left[\begin{array}{cc}
\sigma_{x}^{2} & \sigma_{x y} \\
\sigma_{y x} & \sigma_{y}^{2}
\end{array}\right] \\
C=\frac{1}{N-1} \sum_{n=1}^{N}\left(\vec{x}^{n}-\bar{x}\right)\left(\vec{x}^{n}-\bar{x}\right)^{T}
\end{gathered}
$$

Outer product

$$
\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]=\left[\begin{array}{ll}
x_{1} x_{1} & x_{1} x_{2} \\
x_{2} x_{1} & x_{2} x_{2}
\end{array}\right]
$$

Covariance Matrix

$$
\begin{array}{r}
X=\left[\begin{array}{llll}
\vec{x}^{1} & \vec{x}^{2} & \ldots & \vec{x}^{N}
\end{array}\right]=\left[\begin{array}{cccc}
x_{1}^{1} & x_{1}^{2} & \cdots & x_{1}^{N} \\
x_{2}^{1} & x_{2}^{2} & \cdots & x_{2}^{N} \\
\vdots & \vdots & & \vdots \\
x_{D}^{1} & x_{D}^{2} & \cdots & x_{D}^{N}
\end{array}\right] \\
\end{array}
$$

Mean

$$
\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x^{i}
$$

Covariance Matrix

$$
A=X-\bar{x}=\left[\begin{array}{cccc}
x_{1}^{1}-\bar{x}_{1} & x_{1}^{2}-\bar{x}_{1} & \cdots & x_{1}^{N}-\bar{x}_{1} \\
x_{2}^{1}-\bar{x}_{2} & x_{2}^{2}-\bar{x}_{2} & \cdots & x_{2}^{N}-\bar{x}_{2} \\
\vdots & \vdots & & \vdots \\
x_{D}^{1}-\bar{x}_{D} & x_{D}^{2}-\bar{x}_{D} & \cdots & x_{D}^{N}-\bar{x}_{D}
\end{array}\right]
$$

What is

$$
\frac{1}{N-1} A A^{T}
$$

Covariance Matrix

$$
A A^{T}=\left[\begin{array}{cccc}
x_{1}^{1}-\bar{x}_{1} & x_{1}^{2}-\bar{x}_{1} & \cdots & x_{1}^{N}-\bar{x}_{1} \\
x_{2}^{1}-\bar{x}_{2} & x_{2}^{2}-\bar{x}_{2} & \cdots & x_{2}^{N}-\bar{x}_{2} \\
\vdots & \vdots & & \vdots \\
x_{D}^{1}-\bar{x}_{D} & x_{D}^{2}-\bar{x}_{D} & \cdots & x_{D}^{N}-\bar{x}_{D}
\end{array}\right]\left[\begin{array}{cccc}
x_{1}^{1}-\bar{x}_{1} & x_{2}^{1}-\bar{x}_{2} & \cdots & x_{D}^{1}-\bar{x}_{D} \\
x_{1}^{2}-\bar{x}_{1} & x_{2}^{2}-\bar{x}_{2} & \cdots & x_{D}^{2}-\bar{x}_{D} \\
\vdots & \vdots & & \vdots \\
x_{1}^{N}-\bar{x}_{1} & x_{2}^{N}-\bar{x}_{2} & \cdots & x_{D}^{N}-\bar{x}_{D}
\end{array}\right]
$$

$$
A A^{T}=\left[\begin{array}{ccc}
\sum_{j=1}^{N}\left(x_{1}^{j}-\bar{x}_{1}\right)^{2} & \sum_{j=1}^{N}\left(x_{1}^{j}-\bar{x}_{1}\right)\left(x_{2}^{j}-\bar{x}_{2}\right) & \cdots \\
\sum_{j=1}^{N}\left(x_{2}^{j}-\bar{x}_{2}\right)\left(x_{1}^{j}-\bar{x}_{1}\right) & \sum_{j=1}^{N}\left(x_{2}^{j}-\bar{x}_{2}\right)^{2} & \cdots \\
\vdots & \vdots & \\
\vdots & \cdots
\end{array}\right]
$$

Size?

Intuition

$$
\begin{aligned}
\bar{x}^{n}-\bar{x} & =\sum_{i=1}^{M} a_{i} \vec{u}_{i}+\sum_{j=M+1}^{D} b_{j} \vec{u}_{j} \\
\hat{x}^{n} & =\sum_{i=1}^{M} a_{i} \vec{u}_{i}+\bar{x}
\end{aligned}
$$

Projecting onto \vec{u}_{1} captures the majority of the variance and hence projecting onto it minimizes the error

Intuition

$$
\begin{gathered}
\vec{x}^{n}-\bar{x}=\sum_{i=1}^{M} a_{i} \vec{u}_{i}+\sum_{j=M+1}^{D} b_{j} \vec{u}_{j} \\
\min E_{M}=\sum_{n=1}^{N}\left\|\vec{x}^{n}-\hat{x}^{n}\right\|^{2}
\end{gathered}
$$

Note that these axes are orthogonal and decorrelate the data; ie in the coordinate frame of these axes, the data is uncorrelated.

Intuition

$$
\begin{gathered}
\vec{x}^{n}-\bar{x}=\sum_{i=1}^{M} a_{i} \vec{u}_{i}+\sum_{j=M+1}^{D} b_{j} \vec{u}_{j} \\
\min E_{M}=\sum_{n=1}^{N}\left\|\bar{x}^{n}-\hat{x}^{n}\right\|^{2}
\end{gathered}
$$

So how do we find these directions of maximum variance? This is key.

Principal Component Analysis

Let $X=\left[\bar{x}^{1} \cdots \vec{x}^{N}\right]$
Compute the mean column vector: $\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x^{i}$
Subtract the mean from each column.

$$
A=X-\bar{x}=\left[\left(\bar{x}^{1}-\bar{x}\right) \cdots\left(\bar{x}^{N}-\bar{x}\right)\right]
$$

Covariance matrix can be written

$$
C=\frac{1}{N-1} A A^{T}
$$

Principal Component Analysis

C is real, symmetric, positive definite. We can write it

Eigenvectors

Principal Component Analysis

$$
C=U \Lambda U^{T}=\left[\begin{array}{lll}
& & \\
\vec{e}_{1} & \cdots & \vec{e}_{D}
\end{array}\right]\left[\begin{array}{lll}
\lambda_{1} & & \\
& & \ddots
\end{array}\right]\left[\begin{array}{c}
\vec{e}_{1}^{T} \\
\vdots \\
\\
\\
\vec{e}_{D}^{T}
\end{array}\right]
$$

First three eigenvectors:

Principal Component Analysis

Principal Component Analysis

- Eigenvectors are the principal directions, and the eigenvalues represent the variance of the data along each principal direction $* /_{k}$ is the marginal variance along the principal direction \vec{e}_{k}

Principal Component Analysis

- The first principal direction $\overrightarrow{\mathrm{e}}_{1}$ is the direction along which the variance of the data is maximal, i.e. it maximizes

$$
\overrightarrow{\mathbf{e}}^{T} C \overrightarrow{\mathbf{e}} \quad \text { where } \quad \overrightarrow{\mathbf{e}}^{T} \overrightarrow{\mathbf{e}}=1
$$

- The second principal direction maximizes the variance of the data in the orthogonal complement of the first eigenvector.
- etc.

Principal Component Analysis

- PCA Approximate Basis: If $\lambda_{k} \approx 0$ for $k>M$ for some $M \ll D$, then we can approximate the data using only M of the principal directions (basis vectors):
- If $\mathbf{B}=\left[\vec{e}_{1}, \ldots, \vec{e}_{M}\right]$, then for all points

$$
\vec{x}^{n} \approx \mathbf{B} \vec{a}^{n}+\bar{x}
$$

where

$$
a_{k}^{n}=\left(\vec{x}^{n}-\bar{x}\right)^{T} \vec{e}_{k}
$$

