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Images as vectors.   

Sub-space methods. 
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Goals 

• Images as vectors in a high dimensional 
space 

• Subspace methods (eigen analysis) 

• Covariance and principal component 
analysis 
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Search and Recognition 

1. How can we find the mouth? 

2.   How can we recognize the “expression”? 
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Naïve Appearance-Based Approach 
Database of mouth “templates” 

• Search every image region (at every scale). 

• Compare each template; chose the “best” 

match (Euclidean, correlation, …) 
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Appearance-Based Methods 

Represent objects by their appearance in an ensemble 

of images, including different poses, illuminants, 

configurations of shape, … 

Approaches covered here: 

Subspace (eigen) Methods 

Local Invariant Image Features 

Fleet & Szeliski 
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Images as Vectors 

e.g. standard lexicographic ordering 
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Images as Points 

Points in nxm dimensional space 

Matching involves 

deciding how far apart 

they are in this space. 
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SSD Matching 

• An alternative to correlation is to minimize 

the Sum of Squared Differences (SSD) 

• Distance metric. 

• Euclidean distance = sqrt(E) 
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Template Methods 

Fleet & Szeliski 
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Subspace Methods 
How can we find more efficient representations for the ensemble 

of views, and more efficient methods for matching?  

Idea: images are not random… especially images of the 

same object that have similar appearance 

E.g., let images be represented as 

points in a high-dimensional space 

(e.g., one dimension per pixel) 

Fleet & Szeliski 
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Linear Dimension Reduction 

Given that differences are structured, we can use ‘basis images’ 

to transform images into other images in the same space. 

+ = 

+ 1.7 = 

Fleet & Szeliski 
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Linear Dimension Reduction 

What linear transformations of the images 

can be used to define a lower-dimensional 

subspace that captures most of  the 

structure in the image ensemble? 

Fleet & Szeliski 
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Approach 

• Find a lower dimensional representation 

that captures the variability in the data. 

• Search using this low dimensional model. 
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Goal 

Data point n Low dim representation: 

Map  
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Observation 

I can always write a vector as: 
Kronecker delta =1 if i=j, 0  

otherwise. 

orthonormal 

Example: 
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Observation 
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Projection 

More generally 

Scalar coefficient projection 
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Observation 

Error 

Want the M bases that minimize the mean squared error over 

the training data 
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Simple 2D example 

If I give you the mean and one vector 

to represent the data, what vector 

would you choose? 

Why? 
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Simple 2D example 
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Mouths 

… 
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Mouths 

Recall our goal: 

… 
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Statistics Review 

Sample Mean 

Sample Variance 
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Statistics Review 

Multiple variables: covariance. 

Special case: variance. 
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Statistical Correlation 

The covariance of two random variables X  and Y  

provides a measure of how strongly correlated 

these variables are, and the derived quantity  

(Same as correlation coefficient, r, defined earlier.) 
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Statistical Correlation 
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Covariance Matrix 

For two random variables x and y we have 
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Outer product 



©Michael J. Black CS143 Intro to Computer Vision 

Covariance Matrix 

Mean 
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Covariance Matrix 

What is 
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Covariance Matrix 

Size? 
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Intuition 

Projecting onto       captures the majority of 

the variance and hence projecting onto it 

minimizes the error 
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Intuition 

Note that these axes are orthogonal and 

decorrelate the data; ie in the coordinate frame 

of these axes, the data is uncorrelated. 
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Intuition 

So how do we find these directions of 

maximum variance?  This is key. 
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Principal Component Analysis 

Compute the mean column vector: 

Subtract the mean from each column. 

Covariance matrix can be written 
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Principal Component Analysis 

C is real, symmetric, positive definite.  We 

can write it 

Orthonormal columns 

Eigenvectors 
eigenvalues 
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Principal Component Analysis 

First three eigenvectors: 
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Principal Component Analysis 

D 1 

eigenvalues 
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Principal Component Analysis 

• Eigenvectors are the principal directions, and the eigenvalues 

represent the variance of the data along each principal direction 

  k is the marginal variance along the principal direction  

Fleet & Szeliski 

x1 

x0 

x1 

x0 



©Michael J. Black CS143 Intro to Computer Vision 

Principal Component Analysis 

• The first principal direction       is the direction along 

which the variance of the data is maximal, i.e. it 

maximizes  

where  

• The second principal direction maximizes the variance 

of the data in the orthogonal complement of the first 

eigenvector.  

• etc. 

Fleet & Szeliski 



©Michael J. Black CS143 Intro to Computer Vision 

Principal Component Analysis 

– If                             ,   then for all points                                                           

   where 

Fleet & Szeliksi 


