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Goals 

• Today: Review covariance and principal 
component analysis. 

– Prep for homework 2 

• Monday, holiday, no class 

• Wed start probability and classification 
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Linear Dimension Reduction 

What linear transformations of the images 

can be used to define a lower-dimensional 

subspace that captures most of  the 

structure in the image ensemble? 

Fleet & Szeliski 
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Goal 

Data point n Low dim representation: 

Map  
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Observation 

Error 

Want the M bases that minimize the mean squared error over 

the training data 
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Review: Statistical Correlation 

The covariance of two random variables X  and Y  

provides a measure of how strongly correlated 

these variables are, and the derived quantity  

(Same as correlation coefficient, r, defined earlier.) 
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Review: Covariance Matrix 

For two random variables x and y we have 
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Correlated? 

correlation: strength and direction of a linear relationship 

between two random variables 
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Correlated? 
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Correlated? 
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Correlation 

CS143 Intro to Computer Vision 

Wikipedia 
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Correlated? 

CS143 Intro to Computer Vision 

Wikipedia 
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Principal Component Analysis 

Compute the mean column vector: 

Subtract the mean from each column. 

Covariance matrix can be written 
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Principal Component Analysis 

C is real, symmetric, positive semi-definite.  

We can write it 

Orthonormal columns 

Eigenvectors 
eigenvalues 
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Principal Component Analysis 

First three eigenvectors: 
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Principal Component Analysis 

D 1 

eigenvalues 



©Michael J. Black CS143 Intro to Computer Vision 

Principal Component Analysis 

• Eigenvectors are the principal directions, and the eigenvalues 

represent the variance of the data along each principal direction 

         is the marginal variance along the principal direction  

Fleet & Szeliski 

x1 

x0 

x1 

x0 

k
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Principal Component Analysis 

• The first principal direction       is the direction along 

which the variance of the data is maximal, i.e. it 

maximizes  

where  

• The second principal direction maximizes the variance 

of the data in the orthogonal complement of the first 

eigenvector.  

• etc. 

Fleet & Szeliski 
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Principal Component Analysis 

– If                             ,   then for all points                                                           

   where 

Fleet & Szeliksi 



©Michael J. Black CS143 Intro to Computer Vision 

PCA 

– Over all rank  M  bases, B  minimizes the MSE of 

approximation 

•Choosing subspace dimension M: 

– look at decay of the eigenvalues as a 

function of  M 

– Larger M means lower expected error in 

the subspace data approximation 

M D 1 

eigenvalues 

Fleet & Szeliski 
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Intuition 

˜ x n = ai

 
u i

i=1

M

+ x 
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Intuition 

min EM =
 

x n ˜ x n
2

n=1

N

So how do we find these directions of 

maximum variance?  This is key. 
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Mouth images 

Images 72x88 pixels. 

35 example mouths 

A is N columns by 6336 pixels. 
mean 
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Mouth matrix 

- 
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Covariance Matrix 

What is 
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Correlation 

corr(A(:,30*88+46), A(:,30*88+47)) =  0.9864 
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Covariance 

cov(A(:,30*88+46), A(:,30*88+47))  

 1.5390    1.9338 

 1.9338    2.4974 

1.0e+003 * 
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Correlation 

corr(A(:, 29*88+40), A(:,30*88+43)) =  -0.3641 
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Covariance Matrix 
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Mouth matrix 

AA’ is 6336x6336 pixels. 
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Mouth matrix 

C=AAT 

imagesc(reshape(diag(C),72,88)); 

What does the diagonal look like? 



©Michael J. Black CS143 Intro to Computer Vision 

Mouth matrix 

Why? 
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Mouth matrix 

imagesc(reshape(C(:,1),72,88)); 
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Mouth matrix 

imagesc(reshape(C(1,:),72,88));  ? 



©Michael J. Black CS143 Intro to Computer Vision 

Mouth matrix 

imagesc(reshape(C(:,36*88+44),72,88)); 
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Computing using SVD 

Compute the mean column vector: 

Subtract the mean from each column. 

Singular Value Decomposition allows us to write A as: 
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SVD and PCA 

Orthonormal columns 

Diagonal matrix of singular 

values 
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SVD and PCA 

How are they related? 
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SVD and PCA 
Note: 

In other words 

i.e. the singular vectors of A 

are the eigenvectors of the 

covariance matrix C. 
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SVD and PCA 

• So the columns of U are the eigenvectors 

• And the eigenvalues are just 
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Computing using SVD 

Singular Value Decomposition allows us to write A as: 

C = AAT
= U UT

=
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Mouth matrix 
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SVD 

mean 
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SVD 

mean 

cvar=cumsum(…); 

First 5 = 85% 

First 6 = 90% 

First 11 = 95% 
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Approximating a mouth 

- = 

Image to 

approximate 
Mean 
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Approximating a mouth 

= 587.1616 = a1 

Project input image onto the first eigen basis (dot product). 
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Approximating a mouth 

+ 587.1616 * 
= 

Image to 

approximate 
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Approximating a mouth 

= -363.8750 = a2 

Project input image onto the second basis (dot product). 
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Approximating a mouth 

+ 587.1616 * 

= 

Image to 

approximate 

-363.8750 * 
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Approximating a mouth 

+ 587 * 

= 

Image to 

approximate 

-363 * 

-763 * 



©Michael J. Black CS143 Intro to Computer Vision 

Approximating a mouth 

+ 587 * 

= 

-363 * 

-763 * -286 * 
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Approximating a mouth 

mean 

Increasing numbers of basis images 

Image to 

approximate 
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Bases Revisited 

Basis vector 

Image as a 

vector 

Linear 

coefficients 

Projection of the image onto a set of basis vectors. 
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Bases Revisited 
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Bases Revisited 
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Image as a 

vector 
Linear 

coefficients 

Projection of the image onto a set of basis vectors. 

Basis vector 
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Bases Revisited 

L =

c1
c2
c3

cM
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cM
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Images as a 

vectors 

Linear 

coefficients 

Projection of the image onto a set of basis vectors. 

Basis vector 
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Bases Revisited 

L =

c1
c2
c3

cM
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Linear 

coefficients 

Basis vector 

What about LLT 


