Introduction to Computer Vision

Michael J. Black Sept 2009

Covariance and PCA

Goals

- Today: Review covariance and principal component analysis.
- Prep for homework 2
- Monday, holiday, no class
- Wed start probability and classification

Linear Dimension Reduction

Goal

$\begin{array}{cc}\text { Data point } n & \text { Low dim representation: } \\ \vec{X}^{n} \in \mathfrak{R}^{D} & \vec{Z}^{n} \in \mathfrak{R}^{M} \quad M \ll D\end{array}$

Map $\quad \vec{x}^{n} \rightarrow \vec{z}^{n}$

Observation

Want the M bases that minimize the mean squared error over the training data

$$
\min E_{M}=\sum_{n=1}^{N}\left\|\stackrel{\rightharpoonup}{x}^{n}-\widetilde{x}^{n}\right\|^{2}
$$

Review: Statistical Correlation

The covariance of two random variables X and Y provides a measure of how strongly correlated these variables are, and the derived quantity

$$
\operatorname{cor}(x, y)=\frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{y}}
$$

(Same as correlation coefficient, r, defined earlier.)

Review: Covariance Matrix

For two random variables x and y we have

$$
\begin{gathered}
C=\left[\begin{array}{cc}
\sigma_{x}^{2} & \sigma_{x y} \\
\sigma_{y x} & \sigma_{y}^{2}
\end{array}\right] \\
C=\frac{1}{N-1} \sum_{n=1}^{N}\left(\bar{x}^{n}-\bar{x}\right)\left(\bar{x}^{n}-\bar{x}\right)^{T}
\end{gathered}
$$

Correlated?

correlation: strength and direction of a linear relationship between two random variables

Correlated?

Correlated?

Correlation

Wikipedia

Correlated?

Wikipedia

Principal Component Analysis

Let $X=\left[\bar{x}^{1} \cdots \vec{x}^{N}\right]$
Compute the mean column vector: $\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x^{i}$
Subtract the mean from each column.

$$
A=X-\bar{x}=\left[\left(\bar{x}^{1}-\bar{x}\right) \cdots\left(\bar{x}^{N}-\bar{x}\right)\right]
$$

Covariance matrix can be written

$$
C=\frac{1}{N-1} A A^{T}
$$

Principal Component Analysis

C is real, symmetric, positive semi-definite. We can write it
 Eigenvectors

Principal Component Analysis

$$
C=U \Lambda U^{T}=\left[\begin{array}{lll}
& & \\
\vec{e}_{1} & \cdots & \vec{e}_{D}
\end{array}\right]\left[\begin{array}{lll}
\lambda_{1} & & \\
& & \ddots
\end{array}\right]\left[\begin{array}{c}
\vec{e}_{1}^{T} \\
\vdots \\
\\
\\
\vec{e}_{D}^{T}
\end{array}\right]
$$

First three eigenvectors:

Principal Component Analysis

Principal Component Analysis

- Eigenvectors are the principal directions, and the eigenvalues represent the variance of the data along each principal direction $* \lambda_{k}$ is the marginal variance along the principal direction \vec{e}_{k}

Principal Component Analysis

- The first principal direction $\overrightarrow{\mathrm{e}}_{1}$ is the direction along which the variance of the data is maximal, i.e. it maximizes

$$
\overrightarrow{\mathbf{e}}^{T} C \overrightarrow{\mathbf{e}} \quad \text { where } \quad \overrightarrow{\mathbf{e}}^{T} \overrightarrow{\mathbf{e}}=1
$$

- The second principal direction maximizes the variance of the data in the orthogonal complement of the first eigenvector.
- etc.

Principal Component Analysis

- PCA Approximate Basis: If $\lambda_{k} \approx 0$ for $k>M$ for some $M \ll D$, then we can approximate the data using only M of the principal directions (basis vectors):
- If $\mathbf{B}=\left[\vec{e}_{1}, \ldots, \vec{e}_{M}\right]$, then for all points

$$
\vec{x}^{n} \approx \mathbf{B} \vec{a}^{n}+\bar{x}
$$

where

$$
a_{k}^{n}=\left(\vec{x}^{n}-\bar{x}\right)^{T} \vec{e}_{k}
$$

PCA

- Over all rank M bases, \mathbf{B} minimizes the MSE of approximation

$$
\sum_{j=M+1}^{D} \lambda_{j}
$$

-Choosing subspace dimension M :

- look at decay of the eigenvalues as a function of M
- Larger M means lower expected error in the subspace data approximation

Intuition

$$
\begin{gathered}
\vec{x}^{n}-\bar{x}=\sum_{i=1}^{M} a_{i} \vec{u}_{i}+\sum_{j=M+1}^{D} b_{j} \vec{u}_{j} \\
\min E_{M}=\sum_{n=1}^{N}\left\|\vec{x}^{n}-\tilde{x}^{n}\right\|^{2}
\end{gathered}
$$

So how do we find these directions of maximum variance? This is key.

Mouth images

Images 72×88 pixels.
35 example mouths
A is N columns by 6336 pixels.

mean

Mouth matrix

Covariance Matrix

$$
A=X-\bar{x}=\left[\begin{array}{cccc}
x_{1}^{1}-\bar{x}_{1} & x_{1}^{2}-\bar{x}_{1} & \cdots & x_{1}^{N}-\bar{x}_{1} \\
x_{2}^{1}-\bar{x}_{2} & x_{2}^{2}-\bar{x}_{2} & \cdots & x_{2}^{N}-\bar{x}_{2} \\
\vdots & \vdots & & \vdots \\
x_{D}^{1}-\bar{x}_{D} & x_{D}^{2}-\bar{x}_{D} & \cdots & x_{D}^{N}-\bar{x}_{D}
\end{array}\right]
$$

What is

$$
\frac{1}{N-1} A A^{T}
$$

Correlation

$\operatorname{corr}(\mathrm{A}(:, 30 * 88+46), \mathrm{A}(:, 30 * 88+47))=0.9864$

Covariance

Correlation

$\operatorname{corr}(\mathrm{A}(:, 29 * 88+40), \mathrm{A}(:, 30 * 88+43))=-0.3641$

Covariance Matrix

$$
\begin{aligned}
& A A^{T}=\left[\begin{array}{cccc}
x_{1}^{1}-\bar{x}_{1} & x_{1}^{2}-\bar{x}_{1} & \cdots & x_{1}^{N}-\bar{x}_{1} \\
x_{2}^{1}-\bar{x}_{2} & x_{2}^{2}-\bar{x}_{2} & \cdots & x_{2}^{N}-\bar{x}_{2} \\
\vdots & \vdots & & \vdots \\
x_{D}^{1}-\bar{x}_{D} & x_{D}^{2}-\bar{x}_{D} & \cdots & x_{D}^{N}-\bar{x}_{D}
\end{array}\right]\left[\begin{array}{ccc}
x_{1}^{1}-\bar{x}_{1} & x_{2}^{1}-\bar{x}_{2} & \cdots \\
x_{1}^{2}-\bar{x}_{1} & x_{2}^{2}-\bar{x}_{2} & \cdots \\
\vdots & x_{D}^{2}-\bar{x}_{D} \\
x_{1}^{N}-\bar{x}_{1} & x_{2}^{N}-\bar{x}_{2} & \cdots \\
x_{D}^{N}-\bar{x}_{D}
\end{array}\right] \\
& A A^{T}=\left[\begin{array}{ccc}
\sum_{j=1}^{N}\left(x_{1}^{j}-\bar{x}_{1}\right)^{2} & \sum_{j=1}^{N}\left(x_{1}^{j}-\bar{x}_{1}\right)\left(x_{2}^{j}-\bar{x}_{2}\right) & \cdots \\
\sum_{j=1}^{N}\left(x_{2}^{j}-\bar{x}_{2}\right)\left(x_{1}^{j}-\bar{x}_{1}\right) & \sum_{j=1}^{N}\left(x_{2}^{j}-\bar{x}_{2}\right)^{2} & \cdots \\
\vdots & \vdots & \\
\vdots & & \cdots
\end{array}\right]
\end{aligned}
$$

Mouth matrix

Mouth matrix

What does the diagonal look like?

$$
\begin{aligned}
& C=A A^{T} \\
& \text { imagesc(reshape }(\operatorname{diag}(\mathrm{C}), 72,88)) ;
\end{aligned}
$$

Mouth matrix

Why?

Mouth matrix

imagesc(reshape(C(:,1),72,88));

Mouth matrix

imagesc(reshape(C(1,:),72,88)); ?

Mouth matrix

imagesc(reshape(C(:,36*88+44),72,88));

Computing using SVD

Let $X=\left[\bar{x}^{1} \cdots \bar{x}^{N}\right]$
Compute the mean column vector: $\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x^{i}$
Subtract the mean from each column.

$$
A=X-\bar{x}=\left[\left(\bar{x}^{1}-\bar{x}\right) \cdots\left(\bar{x}^{N}-\bar{x}\right)\right]
$$

Singular Value Decomposition allows us to write A as:

$$
A=U \Sigma V^{T}
$$

SVD and PCA

Diagonal matrix of singular
values

SVD and PCA

How are they related?

SVD and PCA

Note:

$$
\begin{aligned}
C & =\frac{1}{N-1} A A^{T} \\
& =\frac{1}{N-1} U \Sigma V^{T}\left(U \Sigma V^{T}\right)^{T} \\
& =\frac{1}{N-1} U \Sigma V^{T} V \Sigma U^{T} \\
& =\frac{1}{N-1} U \Sigma^{2} U^{T}
\end{aligned}
$$

In other words

$$
C \vec{u}_{i}=\frac{\sigma^{2}}{N-1} \vec{u}_{i}
$$

i.e. the singular vectors of A are the eigenvectors of the covariance matrix C.

SVD and PCA

- So the columns of U are the eigenvectors
- And the eigenvalues are just

$$
\lambda_{k}=\frac{\sigma_{k}^{2}}{N-1}
$$

Computing using SVD

$$
C=A A^{T}=U \Lambda U^{T}=\left[\begin{array}{lll}
& & \\
\vec{e}_{1} & \cdots & \vec{e}_{D}\left[\begin{array}{ccc}
\lambda_{1} & & \\
& & \ddots
\end{array}\right] \\
& & \lambda_{D}\left[\begin{array}{c}
\vec{e}_{1}^{T} \\
\vdots \\
\vec{e}_{D}^{T}
\end{array}\right]
\end{array}\right.
$$

Singular Value Decomposition allows us to write A as:

$$
A=U \Sigma V^{T} \quad \lambda_{k}=\frac{\sigma_{k}^{2}}{N-1}
$$

Mouth matrix

SVD

mean

SVD

Approximating a mouth

Approximating a mouth

Project input image onto the first eigen basis (dot product).

Approximating a mouth

Image to approximate

Approximating a mouth

$$
=-363.8750=a_{2}
$$

Project input image onto the second basis (dot product).

Approximating a mouth

Image to approximate

Approximating a mouth

-763 *

Image to
approximate

Approximating a mouth

-763 *

Approximating a mouth

Image to approximate

Bases Revisited

Projection of the image onto a set of basis vectors.

Bases Revisited

$$
\begin{gathered}
\vec{c}=B^{T} \vec{p} \\
B \vec{c}=B B^{T} \vec{p}=\vec{p} \\
\vec{p}=B\left(B^{T} \stackrel{\rightharpoonup}{p}\right)=B \vec{c}
\end{gathered}
$$

Linear
coefficients
c_{1}
c_{2}
c_{3}
\vdots
c_{M}

p_{2}

p_{3}

\vdots

p_{n \times m}\end{array}\right\rfloor\)| Image as a |
| :--- |
| vector |\right.

Projection of the image onto a set of basis vectors.

Linear
coefficients $\left.L=\left|\begin{array}{ccc}c_{1} & c_{1} & c_{1} \\ c_{2} & c_{2} & c_{2} \\ c_{3} & c_{3} & \cdots \\ \vdots & c_{3} \\ \vdots & \vdots & \\ c_{M} & c_{M} & c_{M}\end{array}\right|=U^{T} \left\lvert\, \begin{array}{cccc}p_{1} & p_{1} & & p_{1} \\ p_{2} & p_{2} & & p_{2} \\ p_{3} & p_{3} & \cdots & p_{3} \\ \vdots & \vdots & & \vdots \\ p_{n \times m} & p_{n \times m} & p_{n \times m}\end{array}\right.\right\rfloor$

Images as a vectors

Projection of the image onto a set of basis vectors.

Linear
coefficients $L=\left|\begin{array}{ccc}c_{1} & c_{1} & c_{1} \\ c_{2} & c_{2} & c_{2} \\ c_{3} & c_{3} & \cdots \\ c_{3} \\ \vdots & \vdots & \\ c_{M} & c_{M} & c_{M}\end{array}\right| \quad$ What about $L L^{T}$

