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Admin 

Assignment 1 grades back shortly. 

Assignment 2, parts 1 and 2 due October 22 at 

11:00am 

 Do part 1 this weekend.  Don’t wait.   

CS143 Intro to Computer Vision 
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Goals 

• Applications of PCA.  

• Start probability and classification 

– Everything you need for parts 1 and 2 

• Monday: finish probability and 
classification 
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ImageNet 

• May be a useful resource for final projects. 

– http://www.image-net.org/index 

CS143 Intro to Computer Vision 
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Cameras 

CMU Mocap lab. 2003 
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Kinematic Tree 

0 1 

2 

Cameras 

CMU Mocap lab. 

2003 

Triangulate to find 3D position of 
markers. 

Fit a human body model. 

Compute joint angles. 
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… 



©Michael J. Black CS143 Intro to Computer Vision 

EigenWalking 

… 

Mean knee motion 

First 3 principal 
components of 
knee motion 
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t = μ( t ) + ckvk ( t )
k=1

q

The joint angles at time t are a linear combination 

of the basis motions evaluated at phase 

Mean curve Basis curves 

t t
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* mean walker  
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1st Eigenvector 2nd Eigenvector 

3rd Eigenvector 4th Eigenvector 
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* sample with small  

Build a probabilistic model and draw a sample from it. 



©Michael J. Black CS143 Intro to Computer Vision 

* sample with moderate  
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* sample with large   
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* sample with very large   
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Appearance Manifolds 

Many objects do not have convex subspaces when one 

considers different poses and lighting variations. 
Fleet & Szeliski 
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Appearance Manifolds 

[Murase & Nayar, 1996] 
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Naïve View-Based Approach 
Database of mouth “templates” 

• Search every image region (at every scale). 

• Compare each template; chose the best 

match. 
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View-Based Approach 
Database of mouth “templates” 

Mean 

First three eigenvectors: 
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View-Based Approach 
Database of mouth “templates” 

Subtract mean 

project 
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Mouth Space 
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Mouth Space 
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Mouth Space 

Define similarity 

in this space. 

Model the 

distribution of 

mouths in this 

space. 
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Images as Vectors 

Is it a mouth? 
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Images as Vectors 

Subtract mean 

Project 



©Michael J. Black CS143 Intro to Computer Vision 

Mouth Space 
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Simple Search Strategy 

Project each training image onto the low-dimensional subspace.  Store 

the vectors of coefficients 

For each image region 

   1 project it onto the low-dimensional subspace 

   2 compare this to each stored coefficient vector (cheap) 

   3 if the smallest distance is less than some threshold, then it is a 

mouth 
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Probabilistic Model 

Linear coefficients 

Want: 
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Probabilistic Model 

“likelihood” 
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Probabilistic Model 
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Probabilistic Model 

Histogram  
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Probabilistic Model 

Normalize so the area under the histogram is 1. 

(empirical probability)   
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Probabilistic Model 

Marginalize: 
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Random variables 
Probability 

Let X be a random variable that can take on one of the 

discrete histogram bins 

 
X {a3,1,…,a3,7}
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Basic facts 
Probability 
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Basic facts 
Probability 

Expected value or expectation of a random variable 

? 
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Joint Probability 

Statistical independence 

 If: 

- knowing y tells you nothing about x 
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Conditional Probability 

Dependence - Knowing the value of one random variable 

tells us something about the other. 
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Statistical Independence 

?   

If A and B are statistically independent? 
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Statistical Independence 

A and B are statistically independent if and only if 
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Conditional Independence 

A is independent of B, conditioned on C 

If I know C, then knowing B doesn’t give 

me any more information about A. 

This does not mean that A and B are 

statistically independent 
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Example: Conditional Independence 

B 

A 
The torso and lower arm poses are not 

independent.  

But if I know the pose of the upper arm 

then knowing the pose of B tells me 

nothing new about A. 
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Classification 
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Classification 
Imagine we just consider one dimension (one 
linear coefficient). 
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Parametric models 

Discrete: normalized histograms. 

Parametric (here Gaussian): 
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Matlab notes 

[mu, sig]=normfit(vector of data) 

This plot was made using 

histfit(vector of data) 

To actually fit the mean and 

variance: 

plot(normpdf(min:max, mu,sig),'r') 
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Classification 

Given a value of a3, how can I classify it as mouth or 

not mouth? 
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Classification 

Maximum likelihood classification 
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Classification 

There is an implicit assumption with this approach.  What? 
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Classification 

There is an implicit assumption with this approach.  What? 



©Michael J. Black CS143 Intro to Computer Vision 

Bayes’ Theorem 

Revd. Thomas Bayes, 1701-1761  
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normalization constant 
(independent of mouth) 

prior likelihood 

Posterior Probability 
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Maximum A Posteriori Classification 

likelihood posterior 

From a3 alone, it looks like MAP classification will always 

prefer the not-mouth interpretation. 
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What about the other coefficients? 

posterior: 
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Conditional Independence 
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Conditional Independence 

Where does this break? 


