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Reading 

Szeliski  

14.1, Face Recognition (including PCA) 

A1.1 and 1.2, SVD and PCA 

CS143 Intro to Computer Vision 
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Goals 

• Finish probability and classification 

– Everything you need assignment 2 

• Wed/Fri: Motion and prep for assign 3 
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Images as Vectors 

Is it a mouth? 
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Images as Vectors 

Subtract mean 

Project 
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Mouth Space 
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Classification 
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Classification 
Imagine we just consider one dimension (one 
linear coefficient). 
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Probabilistic Model 

Marginalize: 
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Marginalization 

CS143 Intro to Computer Vision 

p(a,b) = p(a | b)p(b)

p(a) = p(a | b)p(b) = p(a,b)
bb
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normalization constant 
(independent of mouth) 

prior likelihood 

Posterior Probability 
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Maximum A Posteriori Classification 

likelihood posterior 

From a3 alone, it looks like MAP classification will always 

prefer the not-mouth interpretation. 
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What about the other coefficients? 

posterior: 
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Conditional Independence 
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Conditional Independence 

Where does this break? 



©Michael J. Black CS143 Intro to Computer Vision 

Example: Covariance 

C = cov(A(:,30*88+46)/255, A(:,30*88+47)/255)  

C = 

    0.0237    0.0297 

    0.0297    0.0384 
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Example: Covariance 

C = 

    0.0237    0.0297 

    0.0297    0.0384 

x1 

x2 
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Example: Covariance 

mu=[0 0]; 

% draw 500 samples from a multivariate  

% Gaussian 

r = mvnrnd(mu, C, 500); 

plot(r(:,1), r(:,2), '.'); 

axis([-0.5 0.5 -0.5 0.5]) 
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Example: Covariance 

Samples from p(x1, x2) 
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Example: Covariance 
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Marginals 

p(x2) 

p(x1) 

histfit(r(:,2),25) 
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Independence 

p(x2) ? p(x1) 
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Independence 

[mu2,sig2] = normfit(r(:,2)) 

[mu1,sig1] = normfit(r(:,1)) 
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Independence 

scatter(normrnd(mu1,sig1,500,1),normrnd(mu2,sig2,500,1)) 
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Example: Covariance 

C = 

    0.0237    0.0297 

    0.0297    0.0384 
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Example: Covariance 

p=mvnpdf(X, mu, C); 

surf(X1, X2, reshape(p,size(X1,1), size(X1,2))); 

[X1, X2]=meshgrid(-0.5:0.02:0.5, -0.5:0.02:0.5); 

X = [X1(:) X2(:)]; 



©Michael J. Black CS143 Intro to Computer Vision 

Example: Covariance 

p=mvnpdf(X, mu, C); 

surf(X1, X2, reshape(p,size(X1,1), size(X1,2))); colormap default; 

[X1, X2]=meshgrid(-0.5:0.02:0.5, -0.5:0.02:0.5); 

X = [X1(:) X2(:)]; 
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Whitening 

[U,D]=eig(C) 

U = 

   -0.7876    0.6162 

    0.6162    0.7876 

D = 

    0.0004         0 

         0    0.0617 

plot(r(:,1), r(:,2), '.'); 
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Whitening 

[U, D]=eig(C) 

% project points onto basis 

coeffs = r*U; 

plot(coeffs(:,1), coeffs(:,2), '.'); 

axis true 

˜ x n = x nU

x n cov( ˜ x ) = Dzero mean 
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Whitening 

[U, D]=eig(C) 

% project points onto basis 

coeffs = r*U; 

coeffs2=[coeffs(1,:)/sqrt(D(1,1));   

               coeffs(2,:)/sqrt(D(2,2))]; 

plot(coeffs2(:,1), coeffs2(:,2) ,'.'); 

axis true 

˜ x n = x nUD 1/ 2

x n cov( ˜ x ) = Izero mean 
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Diagonal Covariance 

Determinant is just the product of the diagonals (ie variances). 
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Some Facts 

If x and y are statistically independent then xy=0. 

If xy=0, then x and y are uncorrelated. 

Uncorrelated does not imply statistically independent. 

Uncorrelated and Gaussian does. 

PCA de-correlates the directions but unless the data is Gaussian, the 

coefficients are not statistically independent. 
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Why does decorrelated not imply 

statistically independent? 

• PCA takes into account the second-order statistics in the data 
(in the covariance matrix). 

• The covariance matrix captures correlation. 

• PCA decorrelates the data. 

• But covariance is only a second order statistic. 

• Gaussians are fully described by their first and second order 
statistics (mean and covariance) –decorrelating then results in 
statistical independence 

• But if the data has non-zero higher order statistics, 
decorrelating will not make the dimensions statistically 
independent. 
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PCA and non-Gaussian data 
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PCA and non-Gaussian data 
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PCA and non-Gaussian data 

Decorrelated: corr(X'*u1,X'*u2) 

 ans = -5.8981e-017 

cov(X'*u1,X'*u2) 

    0.9834   -0.0000 

   -0.0000    0.2010 

Not statistically 

independent. 
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PCA and Covariance 

surf(m36) 

Let’s look at how a3 and a6 

co-vary. 

U36=[An*U(:,3) An*U(:,6)]; 

C36=cov(U36) 

mu36=[mean(An*U(:,3)) mean(An*U(:,6))] 

An=A-meanmouth 

U=eigenvectors 

U36=matrix of linear coeffs 

m36=mvnpdf(X, mu36, C36); 
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Covariance 

Mahalanobis distance 

Multivariate Gaussian 

(Normal) 
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Covariance Ellipse 

hyperellipsoids of constant Mahalanobis 
distance  

contour(m36) 

Note the ellipse is axis-aligned.  Why? 
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Mahalanobis distance 
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Mahalanobis Distance 

Linear coefficients 
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Error in approximation? 

• Above measures “distance in feature space”. 

• Residual error is “distance from feature 

space”.  This can be approximated. 

• See Moghaddam & Pentland paper on 

website. 

• Taking approximate error into account 

improves detection for problem 3. 

CS143 Intro to Computer Vision 


