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Finish PCA and classification 

Start motion estimation 
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Photo Forensics  

Hany Farid, Dartmouth 

Tuesday, October 27th at 4pm  

(Marcuvitz Auditorium in Sidney Frank) 

In an attempt to quell rumors regarding the health of North Korea's leader Kim Jong-Il, the 

North Korean government released a series of photographs showing a healthy and active 

Kim Jong-Il. Shortly after their release the BBC claimed that the photographs were 

doctored. The article pointed to purported visual incongruities, which were claimed to be 

the result of photo tampering.  

The BBC was wrong. Because judgments of photo authenticity are often made by eye, we 

wondered how reliable the human visual system is in detecting discrepancies that might 

arise from photo tampering.  We describe three experiments that show that the human 

visual system is remarkably inept at detecting simple geometric inconsistencies in 

shadows, reflections, and planar perspective distortions. We also describe computational 

methods that can be applied to detect the inconsistencies that seem to elude the human 

visual system. 

If you’re curious, here is a video clip of Hany on Nova Science Now describing some of this 

work: http://www.pbs.org/wgbh/nova/sciencenow/0301/03.html 

CS143 Intro to Computer Vision 
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Goals 

• Finish probability and classification 

• Clear up any questions about PCA and 
asign 2 parts 1 and 2. 

• Introduce motion estimation 
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Example: Covariance 
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Points in PCA space 

[U,D]=eig(C) 

U = 

   -0.7876    0.6162 

    0.6162    0.7876 

D = 

    0.0004         0 

         0    0.0617 

plot(r(:,1), r(:,2), '.'); 



©Michael J. Black CS143 Intro to Computer Vision 

Points in PCA space 

[U, D]=eig(C) 

% project points onto basis 

coeffs = r*U; 

plot(coeffs(:,1), coeffs(:,2), '.'); 

axis true 

˜ x n = x nU

x n cov( ˜ x ) = Dzero mean 
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Mahalanobis distance 
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Mahalanobis Distance 

Linear coefficients 
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Mahalanobis distance 
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Classification 
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Covariance 

Mahalanobis distance 

Multivariate Gaussian 

(Normal) 
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Covariance Ellipse 

hyperellipsoids of constant Mahalanobis 
distance  

contour(m36) 

Note the ellipse is axis-aligned.  Why? 
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What about Not Mouths 

Note ellipse is not axis aligned.  Why? 
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Plot them together 
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Posterior 
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Discriminant Function 
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Decision boundary 
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Decision boundary 

In higher dimensions we should do even better. 
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Decision boundary 

In higher dimensions we should do even better. 
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Goal: Introduce Motion 

• So far we’ve looked at static images. 

• The world is more complex and interesting. 

• We need to understand movment. 
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Optical Flow 

J. J. Gibson, The Ecological Approach to Visual Perception 
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Motion Field 

Motion field =  2D motion field representing the projection 

of the 3D motion of points in the scene onto the image plane. 
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Optical Flow 

Optical flow =  2D velocity field describing the apparent 

motion in the images. 
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Optical Flow Field 
Image irradiance at time t 

and location x=(x, y) 

Horizontal component 

Vertical component 
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Problem 
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Thought Experiment 1 

Lambertian (matte) ball 

rotating in 3D 

What does the 2D 

motion field look 

like? 

What does the 2D 

optical flow field look 

like? 

Image source: http://www.evl.uic.edu/aej/488/lecture12.html 
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Special Cases: Lambertian 

Perfect matte surface 

 * reflects all light 

 * reflects equally in all directions 

 * patch appears equally bright from all 

    viewing directions 

 * diffuse reflectance 
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Thought Experiment 2 

Stationary Lambertian 

(matte) ball, moving 

light source. 

What does the 2D 

motion field look 

like? 

What does the 2D 

optical flow field look 

like? 

Image source: http://www.evl.uic.edu/aej/488/lecture12.html 


