Introduction to Computer Vision

Michael J. Black
Oct 2009

Motion estimation

Goals

- Motion estimation
- Brightness constancy
- SSD matching
- Optical flow constraint equation
- Aperture problem
- Spatial coherence and parametric motion
- Optimization

Readings

- Szeliksi: 8.1, 8.2, 8.4

Brightness Constancy Assumption

$$
I(x+u, y+v, t+1)=I(x, y, t)
$$

(assumption)

SSD surface
(sum of squared differences)

$$
E_{S S D}(u, v)=\sum_{x, v \in R}(I(x+u, y+v, t+1)-I(x, y, t))^{2}
$$

How can we optimize over u, v ?

$E_{S S D}(u, v)=\sum_{x, y \in R}(I(x+u, y+v, t+1)-I(x, y, t))^{2}$
How do we find the minimum of $E_{S S D}(u, v)$?
What is the problem with the equation in this form?

Brightness Constancy

$$
E_{S S D}(u, v)=\sum_{x, y \in R}(I(x+u, y+v, t+1)-I(x, y, t))^{2}
$$

$I(x, y, t)+d x \frac{\partial}{\partial x} I(x, y, t)+d y \frac{\partial}{\partial y} I(x, y, t)+d t \frac{\partial}{\partial t} I(x, y, t)-I(x, y, t)=0$

Divide through by $d t$

$$
u \frac{\partial}{\partial x} I(x, y, t)+v \frac{\partial}{\partial y} I(x, y, t)+\frac{\partial}{\partial t} I(x, y, t)=0
$$

Approximating SSD

$$
E_{S S D}(u, v)=\sum_{x, y \in R}(I(x+u, y+v, t+1)-I(x, y, t))^{2}
$$

"Optical flow constraint equation"

$$
I_{x} u+I_{y} v+I_{t}=0
$$

OFCE

At a single image pixel, we get a line:

Aperture Problem

Aperture Problem

Aperture problem

$$
\begin{aligned}
& I_{x} u+I_{y} v=-I_{t} \\
& I_{x} u+0 v=-I_{t} \\
& I_{x} u=-I_{t} \\
& u=-I_{t} / I_{x}
\end{aligned}
$$

v could be anything

Aperture Problem

Aperture Problem

Barber pole illusion

What is the motion field?

Barber's pole

Aperture Problem

Barber pole illusion

Barber's pole

Motion field

Optical flow

Aperture Problem

Barber pole illusion

Barber's pole

Motion field

Why?

Optical flow

Multiple constraints

What are the constraint lines?

$\underline{\text { Multiple constraints }}$

Combine constraints to get an estimate of velocity.

Aperture Problem

Barber pole illusion

http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/OWENS/LECT12/node4.html

Multiple Constraints

Each pixel gives us a constraint: $I_{x} u+I_{y} v=-I_{t}$

Area-Based Flow Estimation

Spatial smoothness assumption
The flow is the same at every pixel in some neighborhood R

$$
E(u, v)=\sum_{x, y \in R}\left(I_{x}(x, y, t) u+I_{y}(x, y, t) v+I_{t}(x, y, t)\right)^{2}
$$

How do we solve for u and v ?

Optimization

$$
E(u, v)=\sum_{x, y \in R}\left(I_{x}(x, y, t) u+I_{y}(x, y, t) v+I_{t}(x, y, t)\right)^{2}
$$

Differentiate with respect to u and v and set this to zero.

$$
\begin{aligned}
& \frac{\partial E}{\partial u}=\sum_{R}\left(I_{x} u+I_{y} v+I_{t}\right) I_{x}=0 \\
& \frac{\partial E}{\partial v}=\sum_{R}\left(I_{x} u+I_{y} v+I_{t}\right) I_{y}=0
\end{aligned}
$$

Optimization

$$
\begin{aligned}
& \frac{\partial E}{\partial u}=\sum_{R}\left(I_{x} u+I_{y} v+I_{t}\right) I_{x}=0 \\
& \frac{\partial E}{\partial v}=\sum_{R}\left(I_{x} u+I_{y} v+I_{t}\right) I_{y}=0
\end{aligned}
$$

Rearranging the terms into something simple to solve? Gather terms.

Optimization

$$
\begin{aligned}
& \frac{\partial E}{\partial u}=\sum_{R}\left(I_{x} u+I_{y} v+I_{t}\right) I_{x}=0 \\
& \frac{\partial E}{\partial v}=\sum_{R}\left(I_{x} u+I_{y} v+I_{t}\right) I_{y}=0
\end{aligned}
$$

Rearranging the terms:

$$
\begin{aligned}
& {\left[\sum_{R} I_{x}^{2}\right] u+\left[\sum_{R} I_{x} I_{y}\right]^{v}=-\sum_{R} I_{x} I_{t}} \\
& {\left[\sum_{R} I_{x} I_{y}\right] u+\left[\sum_{R} I_{y}^{2}\right]^{v}=-\sum_{R} I_{y} I_{t}}
\end{aligned}
$$

Optimization

Can I rewrite this?

Optimization

System of 2 equations in 2 unknowns:

Symmetric positive definite

Positive definite

$$
\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{cc}
\sum I_{x}^{2} & \sum I_{x} I_{y} \\
\sum I_{y} I_{x} & \sum I_{y}^{2}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]>0
$$

for all non-zero real vectors $\left[\begin{array}{ll}u & v\end{array}\right]^{\text {T }}$
$\left[\begin{array}{ll}u & v\end{array}\right]\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]\left[\begin{array}{l}u \\ v\end{array}\right]=\left[\begin{array}{ll}u a+v b & u b+v c\end{array}\right]\left[\begin{array}{l}u \\ v\end{array}\right]=$
$u^{2} a+v^{2} b+u^{2} b+v^{2} c$

Look familiar?

This is just the structure tensor from assignment 1!
The eigenvalues tell us about the local image structure.
They also tell us how well we can estimate the flow in both directions

Look familiar?

$$
\begin{aligned}
& \text { VI }=\left[\begin{array}{l}
L \\
t \\
t
\end{array}\right] \quad \sum \mathrm{V} \| I^{T}
\end{aligned}
$$

Optimization: solve for u, v

System of 2 equations in 2 unknowns:

$$
\begin{aligned}
& \mathbf{A u}=\mathbf{b}
\end{aligned}
$$

(Very very usefu!! Template for solving many problems.)

$$
\begin{gathered}
\text { Algorithm } \\
\hline \mathbf{A}^{-1} \mathbf{A} \mathbf{u}=\mathbf{A}^{-1} \mathbf{b} \\
\mathbf{u}=\mathbf{A}^{-1} \mathbf{b} \\
\mathbf{u}=\left[\begin{array}{l}
u \\
v
\end{array}\right] \nabla I=\left[\begin{array}{l}
I_{x} \\
I_{y}
\end{array}\right] \\
\mathbf{u}=-\left(\sum \nabla I \nabla I^{T}\right)^{-1} \sum \nabla I I_{t}
\end{gathered}
$$

For this to work, the structure tensor must be invertible.

Solving for \mathbf{u}

$$
\left(\sum \nabla \nabla \nabla I^{T}\right) \mathbf{u}=-\sum \nabla I I_{t}
$$

What happens if

* the region is homogeneous?
* there is a single edge?
* a corner
* eigenvalues

Rank of $\mathrm{A}<2$. ie, 1 or more eigenvalues $=0$.

Pseudo-inverse

$\mathbf{A u}=\mathbf{b}$

$$
\begin{gathered}
\mathbf{A}^{T} \mathbf{A} \mathbf{u}=\mathbf{A}^{T} \mathbf{b} \\
\mathbf{u}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b}
\end{gathered}
$$

Pseudo-inverse

$\mathbf{A u}=\mathbf{b}$

$$
\begin{gathered}
\mathbf{A}^{T} \mathbf{A} \mathbf{u}=\mathbf{A}^{T} \mathbf{b} \\
\mathbf{u}=\frac{\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b}}{\text { pinv(A) in Matlab }}
\end{gathered}
$$

SSD Surface - Textured area

Gradients in x and y.

SSD Surface -- Edge

SSD Surface - homogeneous area

$$
\left[\begin{array}{cc}
\sum_{x}^{I_{x}^{2}} & \sum_{x} I_{y} \\
\sum I_{y} I_{x} & \sum I_{y}^{2}
\end{array}\right]
$$

Weak gradients everywhere.

SSD Surface - Surface Boundary

Gradients in x and y.

Translational Model

What's wrong with the translational assumption (ie constant motion within a region R)?

How can we generalize it?

