Introduction to Computer Vision

Michael J. Black Oct 2009

Motion estimation

CS143 Intro to Computer Vision

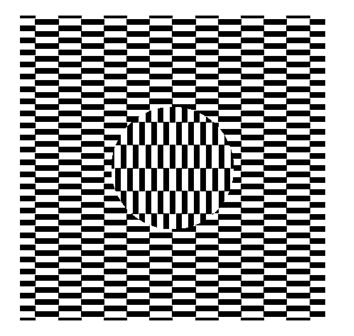
Goals

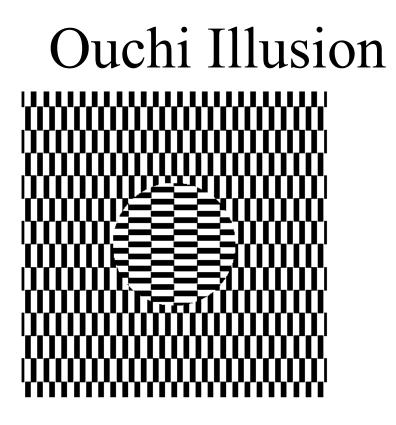
- Motion estimation
 - Beyond translation
 - Optimization
 - Large motions
- Friday
 - Motion under perspective.
 - dense, smooth motion and regularization.
 Robust statistics
- Monday discuss projects.

Assignment 3

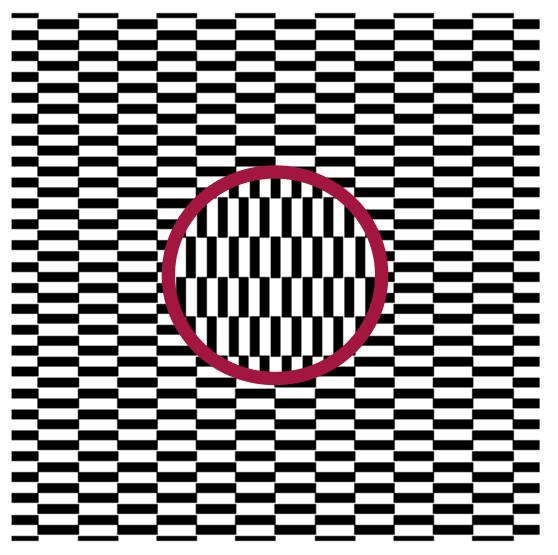
• Out right after class.

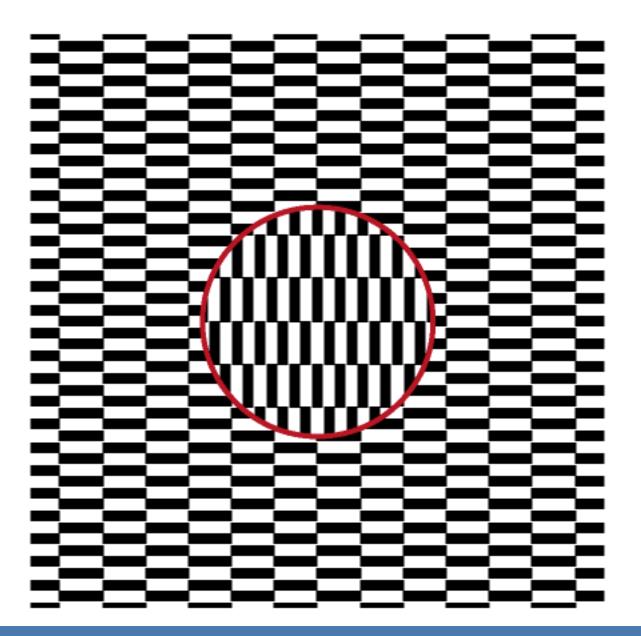
Ouchi Illusion

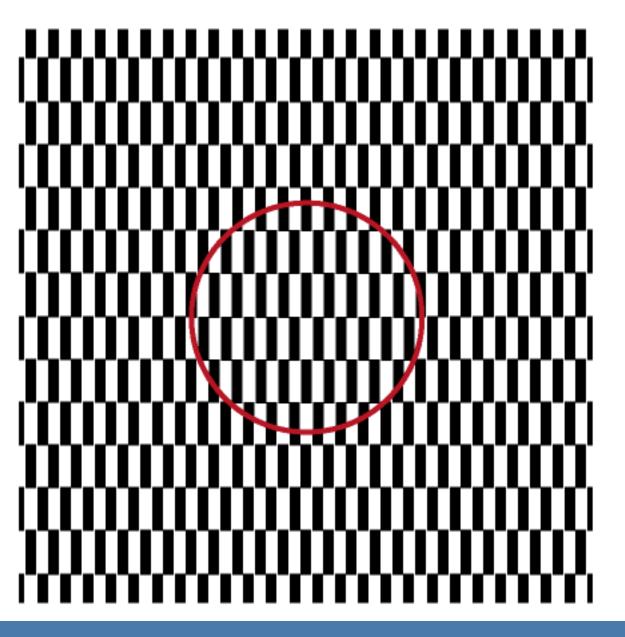


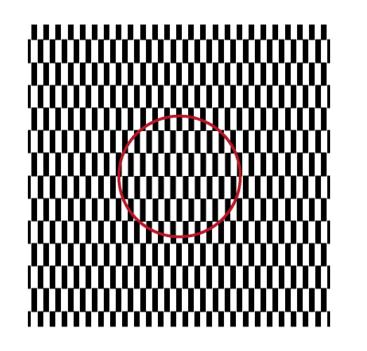


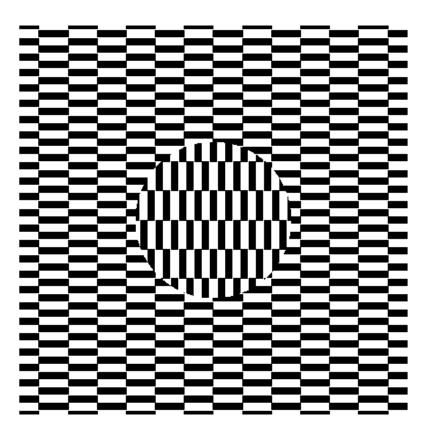
Ouichi Illusion

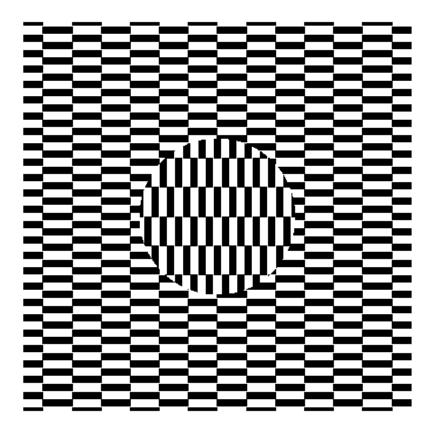












$$E(u,v) = \sum_{x,y \in R} (I_x(x,y,t)u + I_y(x,y,t)v + I_t(x,y,t))^2$$

Differentiate with respect to *u* and *v* and set this to zero, rearrange.

$$\begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_y I_x & \sum I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} -\sum I_x I_t \\ -\sum I_y I_t \end{bmatrix}$$

CS143 Intro to Computer Vision

Optimization: solve for u,v

System of 2 equations in 2 unknowns:

$$\begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_y I_x & \sum I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} -\sum I_x I_t \\ -\sum I_y I_t \end{bmatrix}$$

$$\mathbf{A}\mathbf{u} = \mathbf{b}$$

$$\mathbf{A}^T \mathbf{A}\mathbf{u} = \mathbf{A}^T \mathbf{b}$$

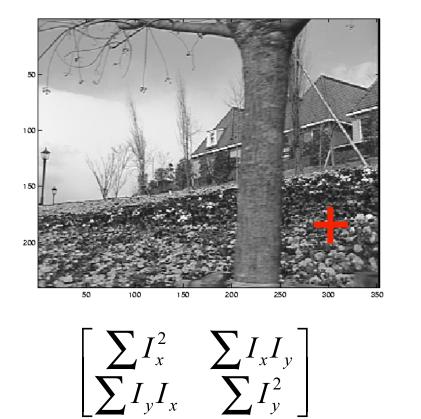
$$\mathbf{u} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$$

Assumptions?

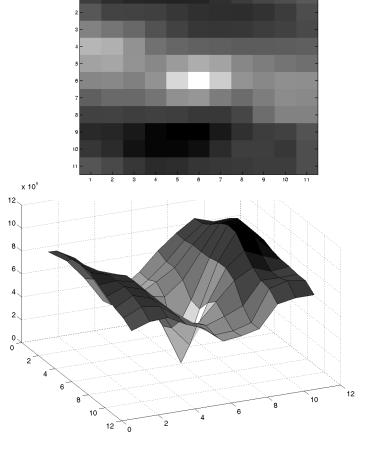
What assumptions are we making for this to work?

$$\begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_y I_x & \sum I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} -\sum I_x I_t \\ -\sum I_y I_t \end{bmatrix}$$
$$\mathbf{A}\mathbf{u} = \mathbf{b}$$
$$\mathbf{A}^T \mathbf{A}\mathbf{u} = \mathbf{A}^T \mathbf{b}$$
$$\mathbf{u} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$$

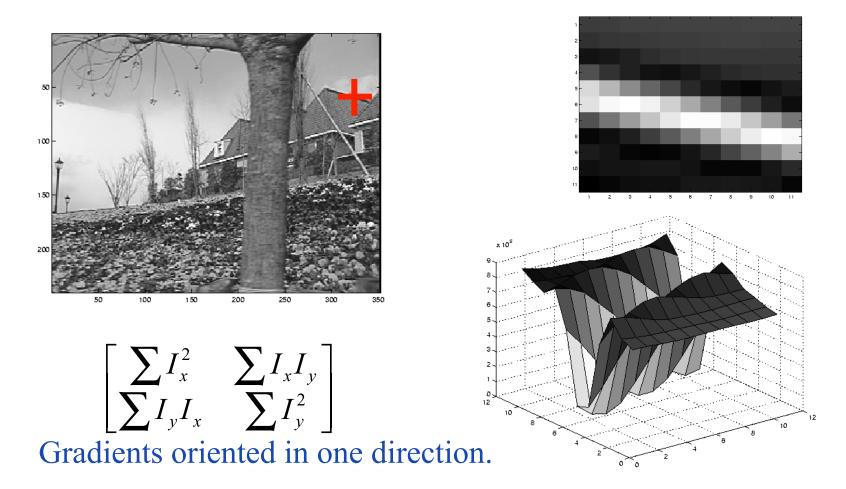
SSD Surface – Textured area



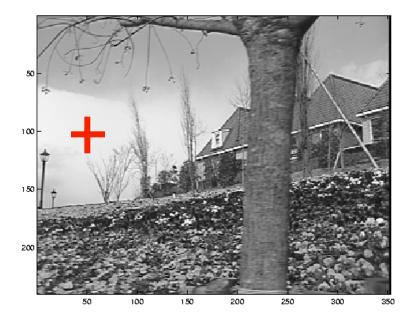
Gradients in x and y.

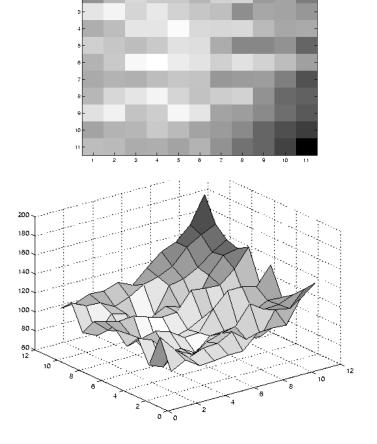


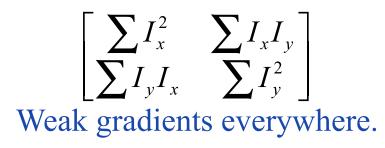
SSD Surface -- Edge



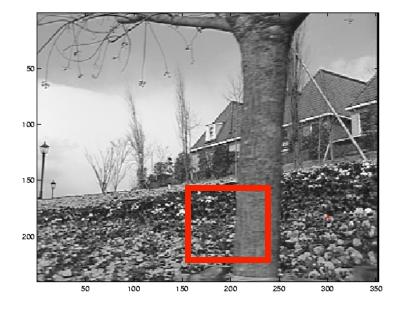
SSD Surface – homogeneous area

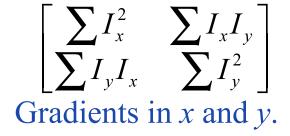






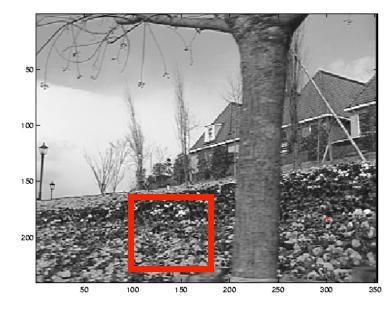
SSD Surface – Surface Boundary





CS143 Intro to Computer Vision

Translational Model

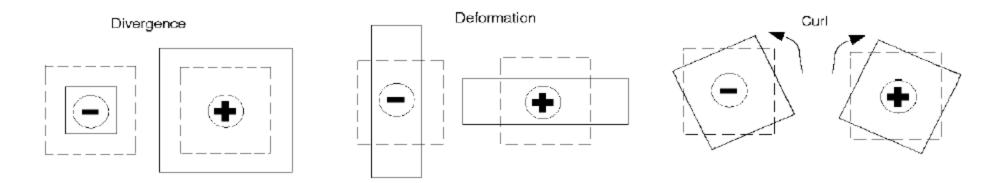


What's wrong with the translational assumption (ie constant motion within a region R)?

How can we generalize it?

$$E(\mathbf{a}) = \sum_{x,y \in R} (\nabla I^T \mathbf{u}(\mathbf{x};\mathbf{a}) + I_t)^2$$

$$\mathbf{u}(\mathbf{x}; \mathbf{a}) = \begin{bmatrix} u(\mathbf{x}; \mathbf{a}) \\ v(\mathbf{x}; \mathbf{a}) \end{bmatrix} = \begin{bmatrix} a_1 + a_2 x + a_3 y \\ a_4 + a_5 x + a_6 y \end{bmatrix}$$



Linear Basis

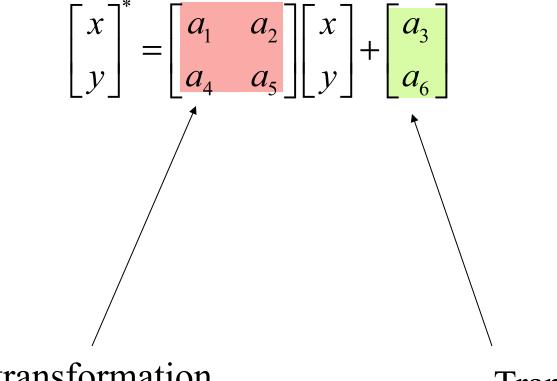
You can think of this as just another set of linear basis functions!

 $\mathbf{u}(\mathbf{x}; \mathbf{c}) = c_{1^{*}} = c_{1^{*}} + c_{2^{*}} + c_{2^{*}} + c_{3^{*}} + c_{4^{*}} + c_{4^{*}} + c_{5^{*}} + c_{6^{*}} + c_{6^{*}}$

$$\mathbf{u}(\mathbf{x}; \mathbf{c}) = \sum_{j=1}^{n} a_{j} \mathbf{b}_{j}(\mathbf{x})$$

Aside: we can learn these with PCA from examples. See Hager and Belhemeu

Affine Transformation

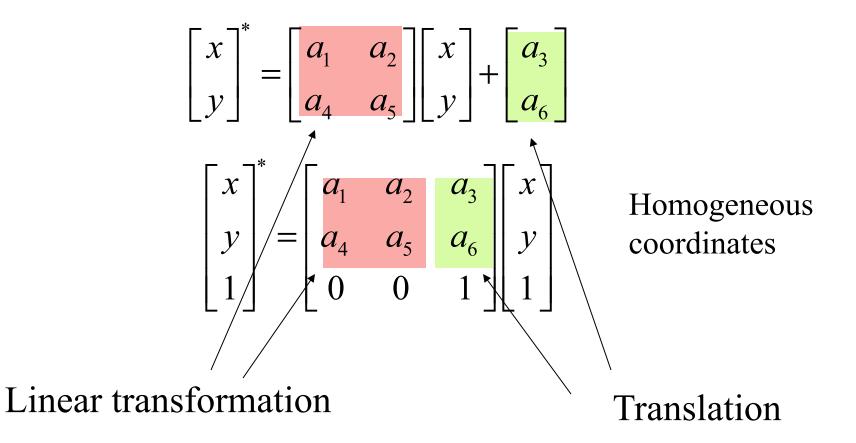


Linear transformation

Translation

CS143 Intro to Computer Vision

Affine Transformation



Affine flow

Motion (flow) between frames (matrix form)

$$\begin{vmatrix} u \\ v \\ 1 \end{vmatrix} = \begin{vmatrix} a1 & a2 & a3 \\ a4 & a5 & a6 \\ 0 & 0 & 1 \\ 1 \end{vmatrix}$$

Affine flow

Motion (flow) between frames							Transformation of pixels						
U		<i>a</i> 1	<i>a</i> 2	<i>a</i> 3	x	x'		x	<i>a</i> 1	<i>a</i> 2	<i>a</i> 3	X	
V	=		<i>a</i> 5	<i>a</i> 6	у	<i>y</i> '	=	y +	<i>a</i> 4	<i>a</i> 5	<i>a</i> 6	y	
1		0	0	1	_1_	_1_		0	0	0	1	1	

Use when transforming pixels

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a1+1 & a2 & a3 & x \\ a4 & a5+1 & a6 & y \\ 0 & 0 & 1 & 1 \end{bmatrix}$$