Introduction to Computer Vision

Michael J. Black
Oct 2009

Motion estimation

Goals

- Motion estimation
- Affine flow
- Optimization
- Large motions
- Why affine?
- Monday
- dense, smooth motion and regularization. Robust statistics
- Mon or Wed - discuss projects.

Assignment 3

- Part 1 and 2 due Nov 3 (Tuesday) 11am
- All due Nov 9 11am

Affine Flow

$$
\begin{gathered}
E(\mathbf{a})=\sum_{x, y \in R}\left(\nabla I^{T} \mathbf{u}(\mathbf{x} ; \mathbf{a})+I_{t}\right)^{2} \\
\mathbf{u}(\mathbf{x} ; \mathbf{a})=\left[\begin{array}{l}
u(\mathbf{x} ; \mathbf{a}) \\
v(\mathbf{x} ; \mathbf{a})
\end{array}\right]=\left[\begin{array}{l}
a_{1}+a_{2} x+a_{3} y \\
a_{4}+a_{5} x+a_{6} y
\end{array}\right]
\end{gathered}
$$

Divergence

Deformation

Affine Transformation

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]^{*}=\left[\begin{array}{ll}
a_{1} & a_{2} \\
a_{4} & a_{5}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
a_{3} \\
a_{6}
\end{array}\right]
$$

Homogeneous coordinates

Linear transformation

Translation

Affine flow

Motion (flow) between frames Transformation of pixels

$$
\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc}
a 1 & a 2 & a 3 \\
a 4 & a 5 & a 6 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right]+\left[\begin{array}{ccc}
a 1 & a 2 & a 3 \\
a 4 & a 5 & a 6 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Use when transforming pixels

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
a 1+1 & a 2 & a 3 \\
a 4 & a 5+1 & a 6 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Important Slide!

When I say x and y , I mean relative to the center of the patch. The patch may be the whole image.

$$
\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc}
a 1 & a 2 & a 3 \\
a 4 & a 5 & a 6 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x-x_{c} \\
y-y_{c} \\
1
\end{array}\right]
$$

[$x_{c} y_{c}$] defines the center of the patch.
So the affine transformation is wrt $(0,0)$.

What can be represented?

What does this do?

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & a 3 \\
0 & 1 & a 6 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

What can be represented?

What does this do?

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

What can be represented?

What does this do?

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

What can be represented?

What does this do?

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Composition and inversion

- Apply two affine transforms successively.
- Represent affine transformations as matrices

$$
x^{*}=A(B x)=(A B) x
$$

- Inversion

$$
x=(A B)^{-1} x^{*}
$$

Transforming images

- Affine transformation is applied to image coordinates x, y

$$
I^{\prime}=I\left(A[x, y, 1]^{T}\right)
$$

How do we do this in Matlab? What are the issues?
>> $[\mathrm{y}, \mathrm{x}]=$ meshgrid $(1: 10,1: 10)$
Get the image $\quad \mathrm{y}=$ coordinates:

1	2	3	4	5	6	7	8	9	10	
1	2	3	4	5	6	7	8	9	10	
1	2	3	4	5	6	7	8	9	10	
1	2	3	4	5	6	7	8	9	10	
1	2	3	4	5	6	7	8	9	10	
1	2	3	4	5	6	7	8	9	10	
1	2	3	4	5	6	7	8	9	10	
1	2	3	4	5	6	7	8	9	10	
1	2	3	4	5	6	7	8	9	10	
1	2	3	4	5	6	7	8	9	10	
\mathbf{x}										
1	1	1	1	1	1	1	1	1	1	
2	2	2	2	2	2	2	2	2	2	
3	3	3	3	3	3	3	3	3	3	
4	4	4	4	4	4	4	4	4	4	
5	5	5	5	5	5	5	5	5	5	
6	6	6	6	6	6	6	6	6	6	
7	7	7	7	7	7	7	7	7	7	
8	8	8	8	8	8	8	8	8	8	
9	9	9	9	9	9	9	9	9	9	
10	10	10	10	10	10	10	10	10	10	

Forwards Warp

Contributes to 4 pixels.

Backwards Warp

Image at t

Contributions from 4 pixels.

Backwards Warp

Image at t

Contributions from 4 pixels - bi-linear interpolation
Every pixel at time $\mathbf{t}+\mathbf{1}$ defined.

Interpolation

- Possible interpolation filters:
- nearest neighbor
- bilinear
- bicubic (interpolating)
- Needed to prevent "jaggies"
- When iteratively warping, always compose the warps and warp the original image

Warping images

Example warps:

Szeliski and Fleet

interp2

INTERP2 2-D interpolation (table lookup).
$\mathrm{ZI}=\operatorname{interp} 2(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{XI}, \mathrm{YI})$
interpolates to find ZI, the values of the underlying 2-D function Z at the points in matrices XI and YI.

Matrices X and Y specify the points at which the data Z is given.

Out of range values are returned as NaN .

Image warping

function warpim= warpImage(image, a)
warpim=zeros(size(image));
$[y, x]=$ meshgrid(1:size(image, 2), 1 :size(image, 1));
$\%$ find the center of the image
$\%$ compute the new pixel locations x 2 and y 2
warpim=interp2(y, x, image, y2, x2, 'linear');
\% fix NaNs
ind=find $(\sim($ warpim $>0 \&$ warpim $<256))$;
warpim(ind) $=0.0$;

Algorithm (i.e. homework \#3)

Incremental optimization

* Given the images, construct the structure tensor invert it, and solve for the motion parameters.
* Warp image 1 towards image 2
* repeat until convergence

Optimization

$$
\left.\begin{array}{c}
E(\mathbf{a})=\sum_{x, y \in R}\left(I_{x} u+I_{y} v+I_{t}\right)^{2} \\
\downarrow \\
E(\mathbf{a})=\sum_{x, y \in R}^{u}\left(I_{x} a_{1} x+I_{x} a_{2} y+I_{x} a_{3}+I_{y} a_{4} x+I_{y} a_{5} y+I_{y} a_{6}+I_{t}\right)^{2} \\
1 \\
0
\end{array} \frac{a 5}{} \begin{array}{c}
a 6 \\
0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] .
$$

Optimization

$$
E(\mathbf{a})=\sum_{x, y \in R}\left(I_{x} a_{1} x+I_{x} a_{2} y+I_{x} a_{3}+I_{y} a_{4} x+I_{y} a_{5} y+I_{y} a_{6}+I_{t}\right)^{2}
$$

Differentiate wrt the a_{i} and set equal to zero.

$$
\left[\begin{array}{cccccc}
\Sigma I_{x}^{2} x^{2} & \Sigma I_{x}^{2} x y & \Sigma I_{x}^{2} x & \Sigma I_{x} I_{y} x^{2} & \Sigma I_{x} I_{y} x y & \Sigma I_{x} I_{y} x \\
\Sigma I_{x}^{2} x y & \Sigma I_{x}^{2} y^{2} & \Sigma I_{x}^{2} y & \Sigma I_{x} I_{y} x y & \Sigma I_{x} I_{y} y^{2} & \Sigma I_{x} I_{y} y \\
& & & \vdots & &
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5} \\
a_{6}
\end{array}\right]=\left[\begin{array}{c}
-\Sigma I_{x} I_{t} x \\
-\Sigma I_{x} I_{t} y \\
-\Sigma I_{x} I_{t} \\
-\Sigma I_{y} I_{t} x \\
-\Sigma I_{y} I_{t} y \\
-\Sigma I_{y} I_{t}
\end{array}\right]
$$

We have a problem

- Taylor approximation assumed small motions.
- Real motions may be larger than a pixel.
- Temporal derivative won't make sense.
- Need a solution.

Compute Flow

function $\mathrm{a}=\mathrm{basicFlow}(\mathrm{im} 1, \mathrm{im} 2$, ainit, iters)
$\%$ warp iml by current flow parameters (start with ainit)
\% compute image derivatives
\% build structure tensor

- \% solve for motion parameters (exclude boundary pixels and non-overlapping pixels from the analysis mark them with nan's)
\% update current flow parameters (compose affine transformations)
\% repeat

Testing your motion code

- Take an image and warp it by some known affine motion.
- Solve for the motion
- You should be able to fairly accurately recover the parameters.
- Start with only translation.

Coarse to Fine (Translation)

function $\mathrm{a}=$ pyramidFlow(im1, im2, ainit, iters, levels)
\% build image pyramids (dividing a3 and a6 by 2 for each
level as you go)
$\%$ starting with coarse level
\% warp iml by current flow
\% estimate flow
\% project flow to next level
$\% \quad$ (ie multiply a3 \& a6 by 2)

$\%$ repeat to finest level

Why Affine?

- Where does this affine approximation come from?
- All our models are approximations to the world. What are the assumptions in the affine approximation?
- For this we need some geometry.

Pinhole cameras

- Abstract camera model - box with a small hole in it.
- Easy to build but needs a lot of light.

