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Goals 

• Motion estimation 

– Affine flow 

– Optimization 

– Large motions 

– Why affine? 

• Monday 

– dense, smooth motion and regularization.  
Robust statistics 

• Mon or Wed – discuss projects. 
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Assignment 3 

• Part 1 and 2 due Nov 3 (Tuesday) 11am 

• All due Nov 9 11am 

CS143 Intro to Computer Vision 
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Affine Flow 
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Affine Transformation 

Linear transformation Translation 

Homogeneous 

coordinates 
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Affine flow 
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Motion (flow) between frames Transformation of pixels 

Use when transforming pixels 
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Important Slide! 
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When I say x and y, I mean relative to the center of the patch. 

The patch may be the whole image. 

[xc yc] defines the center of the patch. 

So the affine transformation is wrt (0, 0). 
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What can be represented? 
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What can be represented? 
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What can be represented? 
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What can be represented? 
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• Apply two affine transforms successively. 

• Represent affine transformations as matrices 

 x* = A(Bx) = (AB)x  

• Inversion 

 x = (AB)-1x* 

Composition and inversion 
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Transforming images 

• Affine transformation is applied to image 

coordinates x, y 

I’=I(A[x,y,1]T) 

How do we do this in Matlab?  What are the 

issues? 

CS143 Intro to Computer Vision 
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>> [y,x]=meshgrid(1:10, 1:10) 

y = 

     1     2     3     4     5     6     7     8     9    10 

     1     2     3     4     5     6     7     8     9    10 

     1     2     3     4     5     6     7     8     9    10 

     1     2     3     4     5     6     7     8     9    10 

     1     2     3     4     5     6     7     8     9    10 

     1     2     3     4     5     6     7     8     9    10 

     1     2     3     4     5     6     7     8     9    10 

     1     2     3     4     5     6     7     8     9    10 

     1     2     3     4     5     6     7     8     9    10 

     1     2     3     4     5     6     7     8     9    10 

x = 

     1     1     1     1     1     1     1     1     1     1 

     2     2     2     2     2     2     2     2     2     2 

     3     3     3     3     3     3     3     3     3     3 

     4     4     4     4     4     4     4     4     4     4 

     5     5     5     5     5     5     5     5     5     5 

     6     6     6     6     6     6     6     6     6     6 

     7     7     7     7     7     7     7     7     7     7 

     8     8     8     8     8     8     8     8     8     8 

     9     9     9     9     9     9     9     9     9     9 

    10    10    10    10    10    10    10    10    10    10 

Get the image 

coordinates: 
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Forwards Warp 

Image at t 

Contributes to 4 pixels. 

A 
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Backwards Warp 

Image at t 

Contributions from 4 pixels. 
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Backwards Warp 

Image at t 

Contributions from 4 pixels – bi-linear interpolation 

Every pixel at time t+1 defined. 

A-1 

Image at t+1 
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Interpolation 

• Possible interpolation filters: 

– nearest neighbor 

– bilinear 

– bicubic (interpolating) 

• Needed to prevent “jaggies” 

• When iteratively warping, always compose the 

warps and warp the original image 

Szeliski and Fleet 
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Warping images 

translation rotation aspect 

affine 
perspective 

cylindrical 

Example warps: 

Szeliski and Fleet 
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interp2 

INTERP2 2-D interpolation (table lookup). 

ZI = interp2(X,Y,Z,XI,YI)  

 interpolates to find ZI, the values of the 

underlying 2-D function Z at the points in 

matrices XI and YI.  

 Matrices X and Y specify the points at 

which the data Z is given.   

 Out of range values are returned as NaN. 
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Image warping 

function warpim= warpImage(image, a) 

warpim=zeros(size(image)); 

[y,x]=meshgrid(1:size(image,2),1:size(image,1)); 

% find the center of the image 

% compute the new pixel locations x2 and y2 

 warpim=interp2(y, x, image, y2, x2, 'linear'); 

% fix NaNs 

ind=find(~(warpim>0 & warpim<256)); 

warpim(ind)=0.0; 
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Algorithm (i.e. homework #3) 

Incremental optimization 

 * Given the images, construct the structure tensor 

 invert it, and solve for the motion parameters. 

 * Warp image 1 towards image 2 

 * repeat until convergence 



©Michael J. Black CS143 Intro to Computer Vision 

Optimization 

E(a) = (Ixu + Iyv + It
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Optimization 

Differentiate wrt the ai and set equal to zero. 

Ix
2x2 Ix

2xy Ix
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E(a) = (Ixa1x + Ixa2y + Ixa3 + Iya4x + Iya5y + Iya6 + It
x,y R

)2
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We have a problem 

• Taylor approximation assumed small 

motions.   

• Real motions may be larger than a pixel.  

• Temporal derivative won’t make sense. 

• Need a solution. 
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Compute Flow 

function a=basicFlow(im1, im2, ainit, iters) 

% warp im1 by current flow parameters (start with ainit) 

% compute image derivatives  

% build structure tensor  

– % solve for motion parameters  (exclude boundary 
pixels and non-overlapping pixels from the analysis – 
mark them with nan’s) 

% update current flow parameters (compose affine 
transformations) 

% repeat 
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Testing your motion code 

• Take an image and warp it by some known 

affine motion. 

• Solve for the motion 

• You should be able to fairly accurately 

recover the parameters. 

• Start with only translation. 
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Coarse to Fine (Translation) 

function a=pyramidFlow(im1, im2, ainit, iters, levels) 

 % build image pyramids (dividing a3 and a6 by 2 for each 

level as you go) 

 % starting with coarse level 

 %  warp im1 by current flow 

 %    estimate flow 

 %    project flow to next level  

 %      (ie multiply a3 & a6 by 2) 

 % repeat to finest level 
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Why Affine? 

• Where does this affine approximation come 
from? 

• All our models are approximations to the 
world.  What are the assumptions in the 
affine approximation? 

• For this we need some geometry. 
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Pinhole cameras 

• Abstract camera model - box with a small hole in it. 

• Easy to build but needs a lot of light. 


