
©Michael J. Black CS143 Intro to Computer Vision

Introduction to Computer Vision

Michael J. Black

Oct 2009

Motion estimation

©Michael J. Black CS143 Intro to Computer Vision

Goals

• Motion estimation

– Affine flow

– Optimization

– Large motions

– Why affine?

• Monday

– dense, smooth motion and regularization.
Robust statistics

• Mon or Wed – discuss projects.

©Michael J. Black

Assignment 3

• Part 1 and 2 due Nov 3 (Tuesday) 11am

• All due Nov 9 11am

CS143 Intro to Computer Vision

©Michael J. Black CS143 Intro to Computer Vision

Affine Flow

©Michael J. Black CS143 Intro to Computer Vision

Affine Transformation

Linear transformation Translation

Homogeneous

coordinates

©Michael J. Black CS143 Intro to Computer Vision

Affine flow

u
v
1

=

a1 a2 a3
a4 a5 a6
0 0 1

x
y

1

x '
y '

1

=

x
y

0

+

a1 a2 a3
a4 a5 a6
0 0 1

x
y

1

x '
y '

1

=

a1+1 a2 a3
a4 a5 +1 a6
0 0 1

x
y

1

Motion (flow) between frames Transformation of pixels

Use when transforming pixels

©Michael J. Black CS143 Intro to Computer Vision

Important Slide!

u
v
1

=

a1 a2 a3
a4 a5 a6
0 0 1

x xc
y yc
1

When I say x and y, I mean relative to the center of the patch.

The patch may be the whole image.

[xc yc] defines the center of the patch.

So the affine transformation is wrt (0, 0).

©Michael J. Black

What can be represented?

CS143 Intro to Computer Vision

x '
y '

1

=

1 0 a3
0 1 a6
0 0 1

x
y

1

What does this do?

©Michael J. Black

What can be represented?

CS143 Intro to Computer Vision

x '
y '

1

=

cos sin 0
sin cos 0
0 0 1

x
y

1

What does this do?

©Michael J. Black

What can be represented?

CS143 Intro to Computer Vision

x '
y '

1

=

2 0 0
0 2 0
0 0 1

x
y

1

What does this do?

©Michael J. Black

What can be represented?

CS143 Intro to Computer Vision

x '
y '

1

=

1 0 0
2 1 0
0 0 1

x
y

1

What does this do?

©Michael J. Black CS143 Intro to Computer Vision

• Apply two affine transforms successively.

• Represent affine transformations as matrices

 x* = A(Bx) = (AB)x

• Inversion

 x = (AB)-1x*

Composition and inversion

©Michael J. Black

Transforming images

• Affine transformation is applied to image

coordinates x, y

I’=I(A[x,y,1]T)

How do we do this in Matlab? What are the

issues?

CS143 Intro to Computer Vision

©Michael J. Black CS143 Intro to Computer Vision

>> [y,x]=meshgrid(1:10, 1:10)

y =

 1 2 3 4 5 6 7 8 9 10

 1 2 3 4 5 6 7 8 9 10

 1 2 3 4 5 6 7 8 9 10

 1 2 3 4 5 6 7 8 9 10

 1 2 3 4 5 6 7 8 9 10

 1 2 3 4 5 6 7 8 9 10

 1 2 3 4 5 6 7 8 9 10

 1 2 3 4 5 6 7 8 9 10

 1 2 3 4 5 6 7 8 9 10

 1 2 3 4 5 6 7 8 9 10

x =

 1 1 1 1 1 1 1 1 1 1

 2 2 2 2 2 2 2 2 2 2

 3 3 3 3 3 3 3 3 3 3

 4 4 4 4 4 4 4 4 4 4

 5 5 5 5 5 5 5 5 5 5

 6 6 6 6 6 6 6 6 6 6

 7 7 7 7 7 7 7 7 7 7

 8 8 8 8 8 8 8 8 8 8

 9 9 9 9 9 9 9 9 9 9

 10 10 10 10 10 10 10 10 10 10

Get the image

coordinates:

©Michael J. Black CS143 Intro to Computer Vision

Forwards Warp

Image at t

Contributes to 4 pixels.

A

©Michael J. Black CS143 Intro to Computer Vision

Backwards Warp

Image at t

Contributions from 4 pixels.

©Michael J. Black CS143 Intro to Computer Vision

Backwards Warp

Image at t

Contributions from 4 pixels – bi-linear interpolation

Every pixel at time t+1 defined.

A-1

Image at t+1

©Michael J. Black CS143 Intro to Computer Vision

Interpolation

• Possible interpolation filters:

– nearest neighbor

– bilinear

– bicubic (interpolating)

• Needed to prevent “jaggies”

• When iteratively warping, always compose the

warps and warp the original image

Szeliski and Fleet

©Michael J. Black CS143 Intro to Computer Vision

Warping images

translation rotation aspect

affine
perspective

cylindrical

Example warps:

Szeliski and Fleet

©Michael J. Black CS143 Intro to Computer Vision

interp2

INTERP2 2-D interpolation (table lookup).

ZI = interp2(X,Y,Z,XI,YI)

 interpolates to find ZI, the values of the

underlying 2-D function Z at the points in

matrices XI and YI.

 Matrices X and Y specify the points at

which the data Z is given.

 Out of range values are returned as NaN.

©Michael J. Black CS143 Intro to Computer Vision

Image warping

function warpim= warpImage(image, a)

warpim=zeros(size(image));

[y,x]=meshgrid(1:size(image,2),1:size(image,1));

% find the center of the image

% compute the new pixel locations x2 and y2

 warpim=interp2(y, x, image, y2, x2, 'linear');

% fix NaNs

ind=find(~(warpim>0 & warpim<256));

warpim(ind)=0.0;

©Michael J. Black CS143 Intro to Computer Vision

Algorithm (i.e. homework #3)

Incremental optimization

 * Given the images, construct the structure tensor

 invert it, and solve for the motion parameters.

 * Warp image 1 towards image 2

 * repeat until convergence

©Michael J. Black CS143 Intro to Computer Vision

Optimization

E(a) = (Ixu + Iyv + It
x,y R

)2

E(a) = (Ixa1x + Ixa2y + Ixa3 + Iya4x + Iya5y + Iya6 + It
x,y R

)2

u
v
1

=

a1 a2 a3
a4 a5 a6
0 0 1

x
y

1

©Michael J. Black CS143 Intro to Computer Vision

Optimization

Differentiate wrt the ai and set equal to zero.

Ix
2x2 Ix

2xy Ix
2x Ix Iyx

2 Ix Iyxy Ix Iyx

Ix
2xy Ix

2y2 Ix
2y Ix Iyxy Ix Iyy

2 Ix Iyy

a1
a2
a3
a4
a5
a6

=

Ix It x

Ix It y

Ix It
IyIt x

IyIt y

IyIt

E(a) = (Ixa1x + Ixa2y + Ixa3 + Iya4x + Iya5y + Iya6 + It
x,y R

)2

©Michael J. Black CS143 Intro to Computer Vision

We have a problem

• Taylor approximation assumed small

motions.

• Real motions may be larger than a pixel.

• Temporal derivative won’t make sense.

• Need a solution.

©Michael J. Black CS143 Intro to Computer Vision

Compute Flow

function a=basicFlow(im1, im2, ainit, iters)

% warp im1 by current flow parameters (start with ainit)

% compute image derivatives

% build structure tensor

– % solve for motion parameters (exclude boundary
pixels and non-overlapping pixels from the analysis –
mark them with nan’s)

% update current flow parameters (compose affine
transformations)

% repeat

©Michael J. Black CS143 Intro to Computer Vision

Testing your motion code

• Take an image and warp it by some known

affine motion.

• Solve for the motion

• You should be able to fairly accurately

recover the parameters.

• Start with only translation.

©Michael J. Black CS143 Intro to Computer Vision

Coarse to Fine (Translation)

function a=pyramidFlow(im1, im2, ainit, iters, levels)

 % build image pyramids (dividing a3 and a6 by 2 for each

level as you go)

 % starting with coarse level

 % warp im1 by current flow

 % estimate flow

 % project flow to next level

 % (ie multiply a3 & a6 by 2)

 % repeat to finest level

©Michael J. Black CS143 Intro to Computer Vision

Why Affine?

• Where does this affine approximation come
from?

• All our models are approximations to the
world. What are the assumptions in the
affine approximation?

• For this we need some geometry.

©Michael J. Black CS143 Intro to Computer Vision

Pinhole cameras

• Abstract camera model - box with a small hole in it.

• Easy to build but needs a lot of light.

