### Introduction to Computer Vision

### Michael J. Black Oct 2009

### Motion estimation

CS143 Intro to Computer Vision

©Michael J. Black

### Goals

- Motion estimation
  - Affine flow
  - Optimization
  - Large motions
  - Why affine?
- Monday
  - dense, smooth motion and regularization.
     Robust statistics
- Mon or Wed discuss projects.

### Assignment 3

- Part 1 and 2 due Nov 3 (Tuesday) 11am
- All due Nov 9 11am

$$E(\mathbf{a}) = \sum_{x,y \in R} (\nabla I^T \mathbf{u}(\mathbf{x};\mathbf{a}) + I_t)^2$$

$$\mathbf{u}(\mathbf{x}; \mathbf{a}) = \begin{bmatrix} u(\mathbf{x}; \mathbf{a}) \\ v(\mathbf{x}; \mathbf{a}) \end{bmatrix} = \begin{bmatrix} a_1 + a_2 x + a_3 y \\ a_4 + a_5 x + a_6 y \end{bmatrix}$$



CS143 Intro to Computer Vision

©Michael J. Black

### Affine Transformation



### Affine flow

Motion (flow) between frames Transformation of pixels  

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} a1 & a2 & a3 \\ a4 & a5 & a6 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} + \begin{bmatrix} a1 & a2 & a3 \\ a4 & a5 & a6 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Use when transforming pixels

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a1+1 & a2 & a3 \\ a4 & a5+1 & a6 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

### Important Slide!

When I say x and y, I mean *relative to the center of the patch*. The patch may be the whole image.

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} a1 & a2 & a3 \\ a4 & a5 & a6 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x - x_c \\ y - y_c \\ 1 \end{bmatrix}$$

 $[x_c y_c]$  defines the center of the patch. So the affine transformation is wrt (0, 0).









### Composition and inversion

- Apply two affine transforms successively.
- Represent affine transformations as matrices  $x^* = A(Bx) = (AB)x$
- Inversion

 $x = (AB)^{-l}x^*$ 

### Transforming images

• Affine transformation is applied to image coordinates *x*, *y* 

 $I' = I(A[x,y,1]^T)$ 

How do we do this in Matlab? What are the issues?

>> [y,x]=meshgrid(1:10, 1:10)

# Get the image coordinates:

| y | =                               |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |  |
|---|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|
|   | 1                               | 2                                    | 3                                    | 4                                    | 5                                    | 6                                    | 7                                    | 8                                    | 9                                    | 10                                   |  |
|   | 1                               | 2                                    | 3                                    | 4                                    | 5                                    | 6                                    | 7                                    | 8                                    | 9                                    | 10                                   |  |
|   | 1                               | 2                                    | 3                                    | 4                                    | 5                                    | 6                                    | 7                                    | 8                                    | 9                                    | 10                                   |  |
|   | 1                               | 2                                    | 3                                    | 4                                    | 5                                    | 6                                    | 7                                    | 8                                    | 9                                    | 10                                   |  |
|   | 1                               | 2                                    | 3                                    | 4                                    | 5                                    | 6                                    | 7                                    | 8                                    | 9                                    | 10                                   |  |
|   | 1                               | 2                                    | 3                                    | 4                                    | 5                                    | 6                                    | 7                                    | 8                                    | 9                                    | 10                                   |  |
|   | 1                               | 2                                    | 3                                    | 4                                    | 5                                    | 6                                    | 7                                    | 8                                    | 9                                    | 10                                   |  |
|   | 1                               | 2                                    | 3                                    | 4                                    | 5                                    | 6                                    | 7                                    | 8                                    | 9                                    | 10                                   |  |
|   | 1                               | 2                                    | 3                                    | 4                                    | 5                                    | 6                                    | 7                                    | 8                                    | 9                                    | 10                                   |  |
|   | 1                               | 2                                    | 3                                    | 4                                    | 5                                    | 6                                    | 7                                    | 8                                    | 9                                    | 10                                   |  |
|   |                                 |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |  |
| X | =                               |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |  |
|   | 1                               | 1                                    | 1                                    | 1                                    | 1                                    | 1                                    | 1                                    | 1                                    | 1                                    | 1                                    |  |
|   | 2                               | 2                                    | 2                                    | 2                                    | 2                                    |                                      |                                      | -                                    |                                      |                                      |  |
|   |                                 | _                                    | Z                                    | Z                                    | 2                                    | 2                                    | 2                                    | 2                                    | 2                                    | 2                                    |  |
|   | 3                               | 3                                    | 23                                   | 23                                   | 2<br>3                               | 2<br>3                               | 2<br>3                               | 2<br>3                               | 2<br>3                               | 2<br>3                               |  |
|   | 3<br>4                          | 2<br>3<br>4                          |  |
|   | 3<br>4<br>5                     | 2<br>3<br>4<br>5                     |  |
|   | 3<br>4<br>5<br>6                | 2<br>3<br>4<br>5<br>6                |  |
|   | 3<br>4<br>5<br>6<br>7           | 2<br>3<br>4<br>5<br>6<br>7           |  |
|   | 3<br>4<br>5<br>6<br>7<br>8      | 2<br>3<br>4<br>5<br>6<br>7<br>8      |  |
|   | 3<br>4<br>5<br>6<br>7<br>8<br>9 | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 |  |



#### **Contributes to 4 pixels.**



#### **Contributions** *from* **4 pixels.**



**Contributions** *from* **4 pixels** – **bi-linear interpolation** 

**Every pixel at time t+1 defined.** 

### Interpolation

- Possible interpolation filters:
  - nearest neighbor
  - bilinear
  - bicubic (interpolating)



- Needed to prevent "jaggies"
- When *iteratively* warping, always *compose* the warps and warp the *original* image

Szeliski and Fleet

### Warping images

#### Example warps:



translation



rotation



aspect



affine



perspective



cylindrical

Szeliski and Fleet

CS143 Intro to Computer Vision

©Michael J. Black

### interp2

INTERP2 2-D interpolation (table lookup).

ZI = interp2(X,Y,Z,XI,YI)

interpolates to find ZI, the values of the underlying 2-D function Z at the points in matrices XI and YI.

Matrices X and Y specify the points at which the data Z is given.

Out of range values are returned as NaN.

## Image warping

```
function warpim= warpImage(image, a)
   warpim=zeros(size(image));
   [y,x]=meshgrid(1:size(image,2),1:size(image,1));
   % find the center of the image
   % compute the new pixel locations x2 and y2
    warpim=interp2(y, x, image, y2, x2, 'linear');
   % fix NaNs
   ind=find(~(warpim>0 & warpim<256));
   warpim(ind)=0.0;
```

## Algorithm (i.e. homework #3)

Incremental optimization

\* Given the images, construct the structure tensor invert it, and solve for the motion parameters.

\* Warp image 1 towards image 2

\* repeat until convergence



 $E(\mathbf{a}) = \sum_{x,y \in R} (I_x a_1 x + I_x a_2 y + I_x a_3 + I_y a_4 x + I_y a_5 y + I_y a_6 + I_t)^2$ Differentiate wrt the  $a_i$  and set equal to zero.

### We have a problem

- Taylor approximation assumed small motions.
- Real motions may be larger than a pixel.
- Temporal derivative won't make sense.
- Need a solution.

### Compute Flow

function a=basicFlow(im1, im2, ainit, iters)

- % warp im1 by current flow parameters (start with ainit)
- % compute image derivatives
- % build structure tensor
- % solve for motion parameters (exclude boundary pixels and non-overlapping pixels from the analysis mark them with nan's)
- % update current flow parameters (*compose* affine transformations)
- % repeat

## Testing your motion code

- Take an image and warp it by some known affine motion.
- Solve for the motion
- You should be able to fairly accurately recover the parameters.
- Start with only *translation*.

## Coarse to Fine (Translation)

function a=pyramidFlow(im1, im2, ainit, iters, levels)

% build image pyramids (dividing a3 and a6 by 2 for each level as you go)

- % starting with coarse level
- % warp im1 by current flow
- % estimate flow
- % project flow to next level
- % (ie multiply a3 & a6 by 2)

% repeat to finest level



### Why Affine?

- Where does this affine approximation come from?
- All our models are approximations to the world. What are the assumptions in the affine approximation?
- For this we need some geometry.

### Pinhole cameras

- Abstract camera model box with a small hole in it.
- Easy to build but needs a lot of light.

