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Goals 

• Today 

– Perspective projection 

– 3D motion 

• Wed 

– Projects 

• Friday 

– Regularization and robust statistics 
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Reading 

• Szeliski 

– 2.2.2: 2D tranformations including affine 

– 2.1.3: 3D transformations including rotation 

matrices (more detailed than we need) 

– 2.1.4: 3D to 2D projections 

CS143 Intro to Computer Vision 
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Affine Flow 



©Michael J. Black CS143 Intro to Computer Vision 

Why Affine? 

• Where does this affine approximation come 
from? 

• All our models are approximations to the 
world.  What are the assumptions in the 
affine approximation? 

• For this we need some geometry. 
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Pinhole cameras 

• Abstract camera model - box with a small hole in it. 

• Easy to build but needs a lot of light. 
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The equation of projection 

Image plane 
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Perspective Projection 
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Move image plane in 

front of focal point 

(image not inverted) 

Optical Axis 

Camera 

coordinate 

frame 

Many to one 
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Perspective Projection 
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Short focal length 

means wider field of 

view. 
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Perspective Projection 
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Perspective Projection 
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(important slide) 
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Distant objects are smaller 
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Orthographic Projection 

X 

Z 

Y 

Assume an infinite focal 

length and that the world is 

infinitely far away. 
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Weak Perspective (scaled orthography) 

X 

Z 

Y 

Assume variation in depth is small relative to the distance from the camera.   

Approximate scene as a fronto-parallel plane 
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Weak Perspective (scaled orthography) 

X 

Z 

Y 
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Claim 

For small motions, affine flow approximates 

the motion of a plane viewed under 

orthographic projection. 

u = vx = a1x + a2y + a3
v = vy = a4x + a5y + a6

u
v

=
x y 1 0 0 0

0 0 0 x y 1

a1
a2
a3
a4
a5
a6
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Recall: 3D motion  
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Motion Models 

3D Rigid Motion 
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Rotation 

Review: Ch 2.1.3, Euclidean Geometry 

Rotation matrix: orthogonal with determinant =1 

RT
= R 1 det(R) = 1
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Rotation 

Review: Ch 2.1.3, Euclidean Geometry 
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Assumption: Small Motion 

(If      is small) 
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3D Motion 
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Assumption: Planar World + 

Orthographic Projection 
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Assumption: Planar World 

a1 = Yb

a3 = Y a + TX
a2 = Yc Z

a4 = Z Xb

a5 = Xc

a6 = TY X a

Substitute: 

u = vx = a1x + a2y + a3
v = vy = a4x + a5y + a6
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Affine Flow 

Small motion assumption 

 * e.g. at video frame rate 

Planar surface 

 * look at only a small 
region of the scene 

Orthographic projection 

 * surface distant from 
camera 

 * long focal length 

u = vx = a1x + a2y + a3
v = vy = a4x + a5y + a6
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Assumptions 

What might be wrong with this? 

Is there a probabilistic interpretation? 

Minimize the negative log. 
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Multiple Motions 
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Occlusion 

occlusion disocclusion shear 

Multiple motions within a finite region. 
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Coherent Motion 

Possibly Gaussian. 
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Multiple Motions 

Definitely not Gaussian. 
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Multiple Motions 

What is the “best” fitting translational motion? 
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Multiple Motions 

Least squares fit. 

X 
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Simpler problem: fitting a line to data 

y 

x 
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y 
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Robust Statistics 

• Recover the best fit to the majority of the 

data. 

• Detect and reject outliers. 

History. 
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Estimating the mean 

0 2 4 6 

Gaussian distribution 

3 

Mean is the optimal solution to: 

residual 
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Estimating the Mean 

The mean maximizes this likelihood: 

The negative log gives (with sigma=1): 

“least squares” estimate 
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Estimating the mean 

0 2 4 6 
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Estimating the mean 

0 2 4 

What happens if we change just one measurement? 

With a single “bad” data point I can move the mean 

arbitrarily far. 

6+


