Introduction to Computer Vision

Michael J. Black
Nov 2009

Perspective projection and affine motion

Goals

- Today
- Perspective projection
- 3D motion
- Wed
- Projects
- Friday
- Regularization and robust statistics

Reading

- Szeliski
- 2.2.2: 2 D tranformations including affine
- 2.1.3:3D transformations including rotation matrices (more detailed than we need)
- 2.1.4: 3D to 2D projections

Affine Flow

$$
\begin{gathered}
E(\mathbf{a})=\sum_{x, y \in R}\left(\nabla I^{T} \mathbf{u}(\mathbf{x} ; \mathbf{a})+I_{t}\right)^{2} \\
\mathbf{u}(\mathbf{x} ; \mathbf{a})=\left[\begin{array}{l}
u(\mathbf{x} ; \mathbf{a}) \\
v(\mathbf{x} ; \mathbf{a})
\end{array}\right]=\left[\begin{array}{l}
a_{1}+a_{2} x+a_{3} y \\
a_{4}+a_{5} x+a_{6} y
\end{array}\right]
\end{gathered}
$$

Divergence

Deformation

Why Affine?

- Where does this affine approximation come from?
- All our models are approximations to the world. What are the assumptions in the affine approximation?
- For this we need some geometry.

Pinhole cameras

- Abstract camera model - box with a small hole in it.
- Easy to build but needs a lot of light.

The equation of projection

Perspective Projection

Perspective Projection

Perspective Projection

Perspective Projection

(important slide)

Perspective Projection

Distant objects are smaller

Orthographic Projection

Assume an infinite focal length and that the world is infinitely far away.

$$
(x, y, z) \rightarrow(x, y)
$$

$$
x^{\prime}=x, y^{\prime}=y
$$

Weak Perspective (scaled orthography)

Assume variation in depth is small relative to the distance from the camera.
Approximate scene as a fronto-parallel plane

Weak Perspective (scaled orthography)

Claim

For small motions, affine flow approximates the motion of a plane viewed under orthographic projection.

$$
\begin{aligned}
& u=v_{x}=a_{1} x+a_{2} y+a_{3} \\
& v=v_{y}=a_{4} x+a_{5} y+a_{6}
\end{aligned} \quad\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{llllll}
x & y & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x & y & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5} \\
a_{6}
\end{array}\right]
$$

Recall: 3D motion

Motion Models

Review: Ch 2.1.3, Euclidean Geometry

Rotation

$$
R_{Z}^{\Omega_{Z}}=\left[\begin{array}{ccc}
\cos \Omega_{Z} & -\sin \Omega_{Z} & 0 \\
\sin \Omega_{Z} & \cos \Omega_{Z} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
R_{Y}^{\Omega_{Y}}=\left[\begin{array}{ccc}
\cos \Omega_{Y} & 0 & \sin \Omega_{Y} \\
0 & 1 & 0 \\
-\sin \Omega_{Y} & 0 & \cos \Omega_{Y}
\end{array}\right]
$$

$$
R_{X}^{\Omega_{X}}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \Omega_{X} & -\sin \Omega_{X} \\
0 & \sin \Omega_{X} & \cos \Omega_{X}
\end{array}\right]
$$

Rotation matrix: orthogonal with determinant $=1$

$$
R^{T}=R^{-1} \quad \operatorname{det}(R)=1
$$

Review: Ch 2.1.3, Euclidean Geometry

Rotation

$$
R_{Z}^{\Omega_{Z}}=\left[\begin{array}{ccc}
\cos \Omega_{Z} & -\sin \Omega_{Z} & 0 \\
\sin \Omega_{Z} & \cos \Omega_{Z} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
R_{Y}^{\Omega_{Y}}=\left[\begin{array}{ccc}
\cos \Omega_{Y} & 0 & \sin \Omega_{Y} \\
0 & 1 & 0 \\
-\sin \Omega_{Y} & 0 & \cos \Omega_{Y}
\end{array}\right]
$$

$$
R_{X}^{\Omega_{X}}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \Omega_{X} & -\sin \Omega_{X} \\
0 & \sin \Omega_{X} & \cos \Omega_{X}
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
\cos \Omega_{Y} \cos \Omega_{Z} & \sin \Omega_{X} \sin \Omega_{Y} \cos \Omega_{Z}-\cos \Omega_{X} \sin \Omega_{Z} & \cos \Omega_{X} \sin \Omega_{Y} \cos \Omega_{Z}+\sin \Omega_{X} \sin \Omega_{Z} \\
\cos \Omega_{Y} \sin \Omega_{Z} & \sin \Omega_{X} \sin \Omega_{Y} \sin \Omega_{Z}+\cos \Omega_{X} \cos \Omega_{Z} & \cos \Omega_{X} \sin \Omega_{Y} \sin \Omega_{Z}-\sin \Omega_{X} \cos \Omega_{Z} \\
-\sin \Omega_{Y} & \sin \Omega_{X} \cos \Omega_{Y} & \cos \Omega_{X} \cos \Omega_{Y}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]+\left[\begin{array}{c}
T_{X} \\
T_{Y} \\
T_{Z}
\end{array}\right]
$$

Assumption: Small Motion

$$
\begin{aligned}
& {\left[\begin{array}{c}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \Omega_{Y} \cos \Omega_{Z} & \sin \Omega_{X} \sin \Omega_{Y} \cos \Omega_{Z}-\cos \Omega_{X} \sin \Omega_{Z} & \cos \Omega_{X} \sin \Omega_{Y} \cos \Omega_{Z}+\sin \Omega_{X} \sin \Omega_{Z} \\
\cos \Omega_{Y} \sin \Omega_{Z} & \sin \Omega_{X} \sin \Omega_{Y} \sin \Omega_{Z}+\cos \Omega_{X} \cos \Omega_{Z} & \cos \Omega_{X} \sin \Omega_{Y} \sin \Omega_{Z}-\sin \Omega_{X} \cos \Omega_{Z} \\
-\sin \Omega_{Y} & \sin \Omega_{X} \cos \Omega_{Y}
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]+\left[\begin{array}{l}
T_{X} \\
T_{Y} \\
T_{Z}
\end{array}\right]} \\
& \\
& {\left[\begin{array}{c}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right] \approx\left[\begin{array}{ccc}
1 & -\Omega_{Z} & \Omega_{Y} \\
\Omega_{Z} & 1 & -\Omega_{X} \\
-\Omega_{Y} & \Omega_{X} & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]+\left[\begin{array}{c}
T_{X} \\
T_{Y} \\
T_{Z}
\end{array}\right] \begin{array}{c}
\cos \theta \approx 1 \quad \text { (If } \theta \text { is small) } \\
\sin \theta \approx \theta
\end{array}}
\end{aligned}
$$

3D Motion

$$
\left.\begin{array}{c}
{\left[\begin{array}{c}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right] \approx\left[\begin{array}{ccc}
0 & -\Omega_{Z} & \Omega_{Y} \\
\Omega_{Z} & 0 & -\Omega_{X} \\
-\Omega_{Y} & \Omega_{X} & 0
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]+\left[\begin{array}{l}
T_{X} \\
V_{Y} \\
V_{Z}
\end{array}\right]=\left[\begin{array}{c}
X^{\prime}-X \\
T_{Y}^{\prime}-Y \\
T_{Z}
\end{array}\right]} \\
Z^{\prime}-Z
\end{array}\right] \approx\left[\begin{array}{ccc}
0 & -\Omega_{Z} & \Omega_{Y} \\
\Omega_{Z} & 0 & -\Omega_{X} \\
-\Omega_{Y} & \Omega_{X} & 0
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]+\left[\begin{array}{l}
T_{X} \\
T_{Y} \\
T_{Z}
\end{array}\right], \begin{gathered}
V_{X}=-\Omega_{Z} Y+\Omega_{Y} Z+T_{X} \\
V_{Y}=\Omega_{Z} X-\Omega_{X} Z+T_{Y} \\
V_{Z}=-\Omega_{Y} X+\Omega_{X} Y+T_{Z}
\end{gathered}
$$

Assumption: Planar World + Orthographic Projection

$$
\begin{array}{ll}
Z=a+b X+c Y \\
x=X & \\
y=Y
\end{array} \quad \begin{aligned}
& u=v_{x}=-\Omega_{Z} y+\Omega_{Y} Z+T_{X} \\
& v=v_{y}=\Omega_{Z} x-\Omega_{X} Z+T_{Y} \\
& \\
& \\
& \quad u=v_{x}=-\Omega_{Z} y+\Omega_{Y}(a+b x+c y)+T_{X} \\
& v=v_{y}=\Omega_{Z} x-\Omega_{X}(a+b x+c y)+T_{Y}
\end{aligned}
$$

Assumption: Planar World

$$
\begin{array}{cc}
u=v_{x}=-\Omega_{Z} y+\Omega_{Y}(a+b x+c y)+T_{X} & \\
v=v_{y}=\Omega_{Z} x-\Omega_{X}(a+b x+c y)+T_{Y} & \text { Substitute: } \\
u=v_{x}=\left(\Omega_{Y} c-\Omega_{Z}\right) y+\Omega_{Y} b x+\left(\Omega_{Y} a+T_{X}\right) & a_{1}=\Omega_{Y} b \\
v=v_{y}=\left(\Omega_{Z}-\Omega_{X} b\right) x-\Omega_{X} c y+\left(T_{Y}-\Omega_{X} a\right) & a_{3}=\Omega_{Y} a+T_{X} \\
a_{2}=\Omega_{Y} c-\Omega_{Z} \\
u=v_{x}=a_{1} x+a_{2} y+a_{3} & a_{4}=\Omega_{Z}-\Omega_{X} b \\
v=v_{y}=a_{4} x+a_{5} y+a_{6} & a_{5}=-\Omega_{X} c \\
a_{6}=T_{Y}-\Omega_{X} a
\end{array}
$$

Affine Flow

Small motion assumption

* e.g. at video frame rate

Planar surface

* look at only a small

$$
u=v_{x}=a_{1} x+a_{2} y+a_{3}
$$

$$
v=v_{y}=a_{4} x+a_{5} y+a_{6}
$$

region of the scene
Orthographic projection

* surface distant from
camera
* long focal length

Assumptions

What might be wrong with this?

$$
E(\mathbf{a})=\sum_{x, y \in R}\left(\nabla I^{T} \mathbf{u}(\mathbf{x} ; \mathbf{a})+I_{t}\right)^{2}
$$

Is there a probabilistic interpretation?
$\max _{\mathbf{a}} p(I \mid \mathbf{a}) \propto \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{x, y \in R}\left(\nabla I^{T} \mathbf{u}(\mathbf{x} ; \mathbf{a})+I_{t}\right)^{2}\right)$
Minimize the negative log.

Multiple Motions

Occlusion

Multiple motions within a finite region.

Coherent Motion

Possibly Gaussian.

Multiple Motions

v
Definitely not Gaussian.

Multiple Motions

What is the "best" fitting translational motion?

Multiple Motions

Least squares fit.

Simpler problem: fitting a line to data

Robust Statistics

- Recover the best fit to the majority of the data.
- Detect and reject outliers.

History.

Estimating the mean

Estimating the Mean

The mean maximizes this likelihood:

$$
\max _{\mu} p\left(d_{i} \mid \mu\right)=\frac{1}{\sqrt{2 \pi} \sigma} \prod_{i=1}^{N} \exp \left(-\frac{1}{2}\left(d_{i}-\mu\right)^{2} / \sigma^{2}\right)
$$

The negative \log gives (with sigma=1):

$$
\begin{aligned}
& \min _{\mu} \sum_{i=1}^{N}\left(d_{i}-\mu\right)^{2} \\
& \quad \text { "least squares" estimate }
\end{aligned}
$$

Estimating the mean

Estimating the mean

What happens if we change just one measurement?

With a single "bad" data point I can move the mean arbitrarily far.

