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A probabilistic grammar for the grouping and labeling of parts and 

objects, when taken together with pose and part-dependent appearance 

models, constitutes a generative scene model and a Bayesian 

framework for image analysis. To the extent that the generative model 

generates features, as opposed to pixel intensities, the posterior 

distribution (i.e. the conditional distribution on part and object labels 

given the image) is based on incomplete information; feature vectors 

are generally insufficient to recover the original intensities. I will 

propose a way to learn pixel-level models for the appearances of parts.  

I will demonstrate the utility of the models with some experiments in 

Bayesian image classification. 
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Goals 

• Today 

– Finish project ideas 

– Finish robust stats and non-linear optimization 

– Start regularization 

• Wednesday  

– Finish regularization and dense flow 

– Start tracking 



©Michael J. Black 

Assignments 

• Assignment 4 out today.   

– Problem 1 due next Monday (pretty easy) and 

you have everything you need. 

– Problem 2 due a week later.  Tracking. 

• Project proposal due Friday 
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Problem 

Violations of brightness constancy result in large residuals: 

* Chose    to be insensitive to outliers 
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Robust Estimation 

How do we minimize this? 
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Robust Estimation 

Minimize: differentiate and set equal to zero: 

No closed form solution! 
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Gradient Descent 

Minimize 

The root x* corresponds to the point 
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Gradient Descent 

Minimize 
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Coordinate Descent 

Minimize 

Solve for x 
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Coordinate Descent 

Minimize 

Now solve: 
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Newton’s Method 

Incrementally update 
the estimate of x 

In multiple dimensions the second derivative corresponds to 

the Hessian matrix – we’ll just do coordinate descent. 
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Robust motion estimation 

I take the max of the second derivative. 

Guaranteed to converge. 

But not guaranteed to find a global minimum! 
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Minimize: 

Parameterized models provide strong constraints: 

 * Hundreds, or thousands, of constraints. 

 * Handful (e.g. six) unknowns. 

Can be very accurate (when the model is good)! 
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Geman-McClure function works well. 

Twice differentiable, redescending. 
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Deterministic Annealing 

Start with a “quadratic” optimization problem 

and gradually reduce outliers. 
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Continuation method 

GNC: Graduated Non-

Convexity 



©Michael J. Black CS143 Intro to Computer Vision 

Probabilistic Interpretation 

Gaussian Cauchy 

“heavy” tails 
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Fragmented Occlusion 
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Results 
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Results 
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What about small regions? 

What if the region is a single pixel? 

What is the problem with this? 

How might we fix it? 
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Spatial Coherence 

Assumption 

   * Neighboring points in the scene typically belong to the same    

      surface and hence typically have similar motions. 

   * Since they also project to nearby points in the image, we expect  

      spatial coherence in image flow. 
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Formalize this Idea 

Noisy 1D signal: 

x 

u 

Noisy measurements u(x) 
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Regularization 

Find the “best fitting” smoothed function v(x) 

x 

u 

Noisy measurements u(x) 

v(x) 
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Membrane model 

Find the “best fitting” smoothed function v(x) 

x 

u 
v(x) 
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Membrane model 

Find the “best fitting” smoothed function v(x) 
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Membrane model 

Find the “best fitting” smoothed function v(x) 

u 
v(x) 


