Introduction to Computer Vision

Michael J. Black Nov 2009

Regularization and dense flow

Goals

- Today
 - Finish regularization and dense flow
- Friday
 - Start tracking

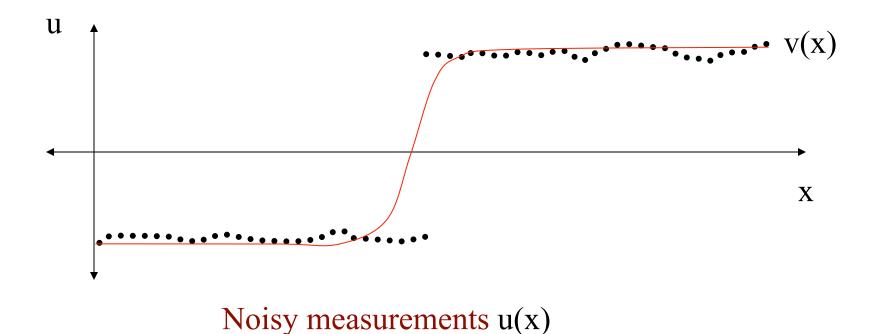
Formalize this Idea

Noisy 1D signal:

Noisy measurements u(x)

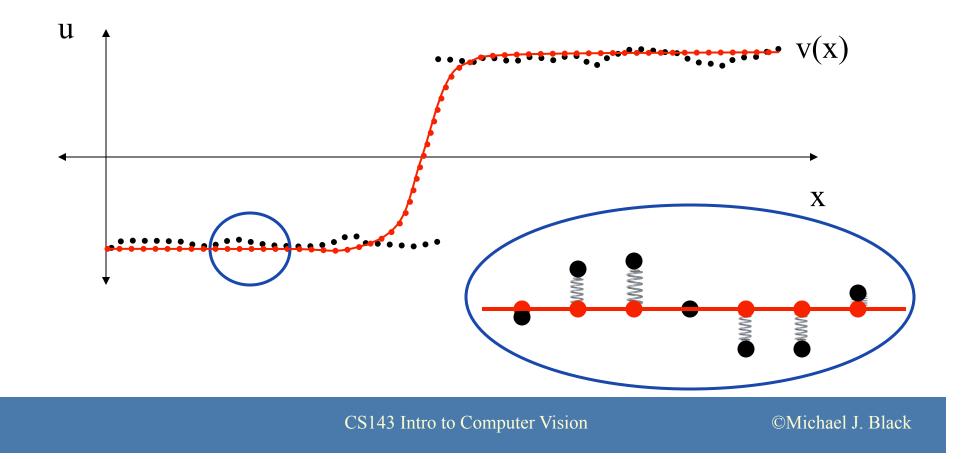
Regularization

Find the "best fitting" smoothed function v(x)



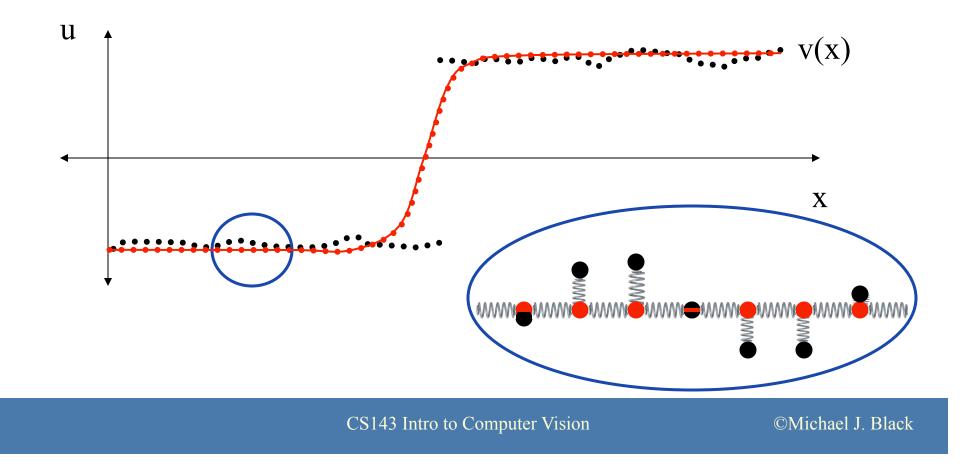
Membrane model

Find the "best fitting" smoothed function v(x)



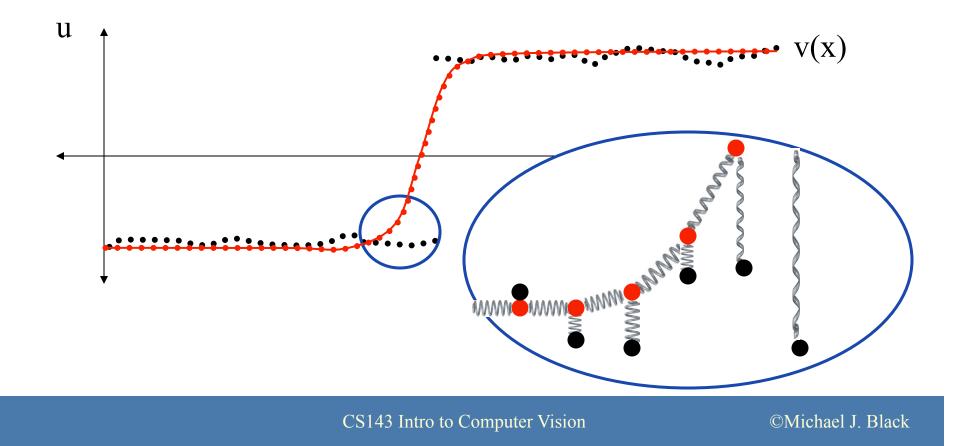
Membrane model

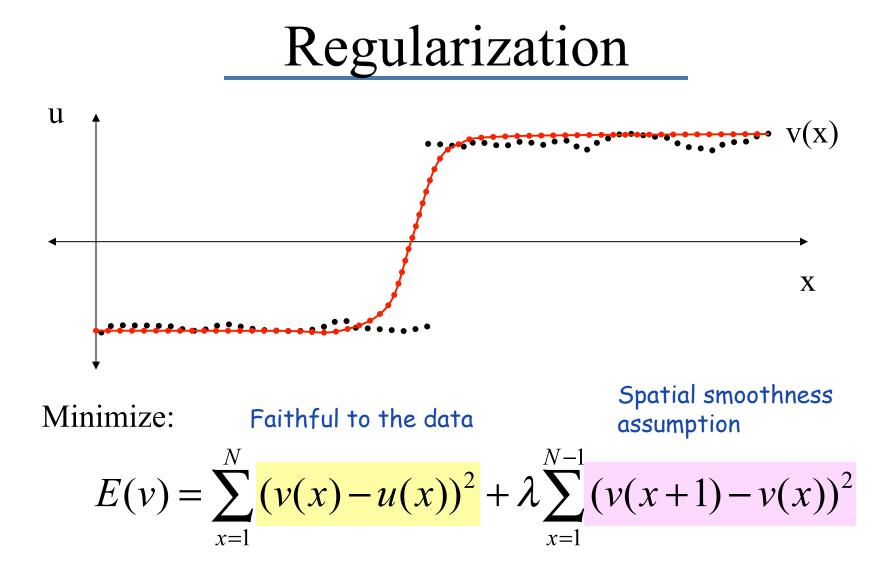
Find the "best fitting" smoothed function v(x)



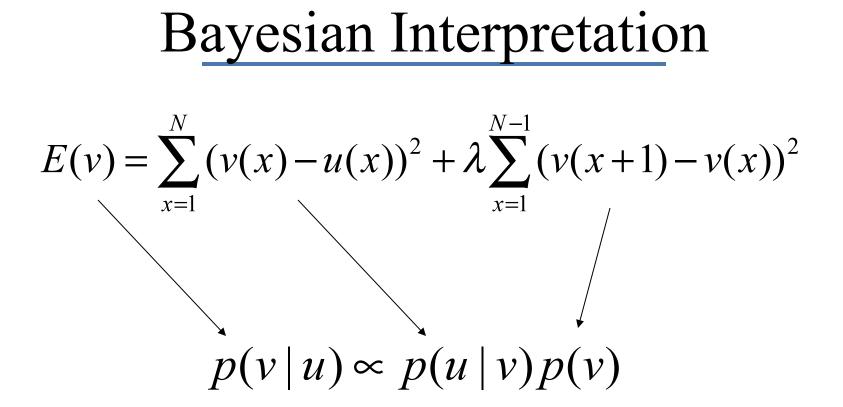
Membrane model

Find the "best fitting" smoothed function v(x)





CS143 Intro to Computer Vision



Generative Models

$$u(x) = v(x) + \eta$$
$$\eta \sim N(0, \sigma_1)$$

$$v(x) = v(x+1) + \eta_2$$
$$\eta_2 \sim N(0, \sigma_2)$$

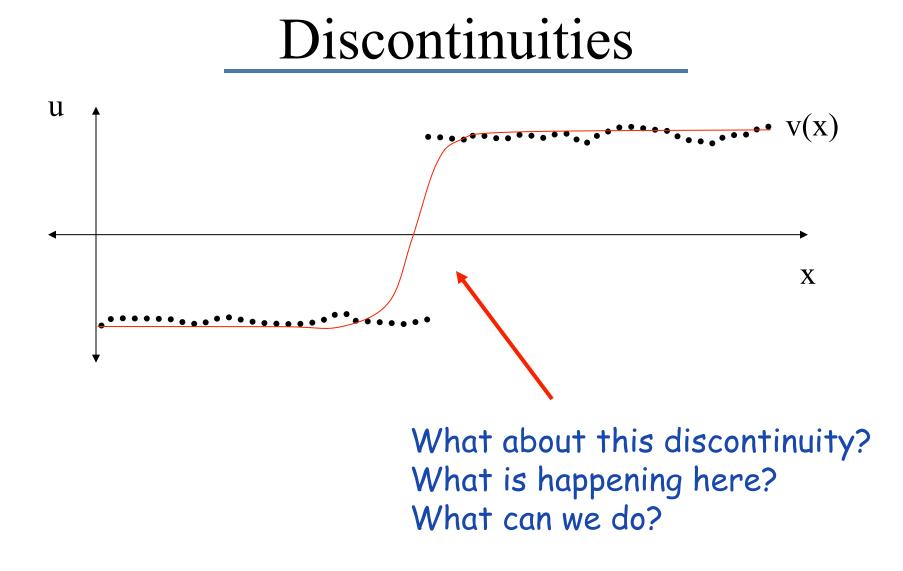
CS143 Intro to Computer Vision

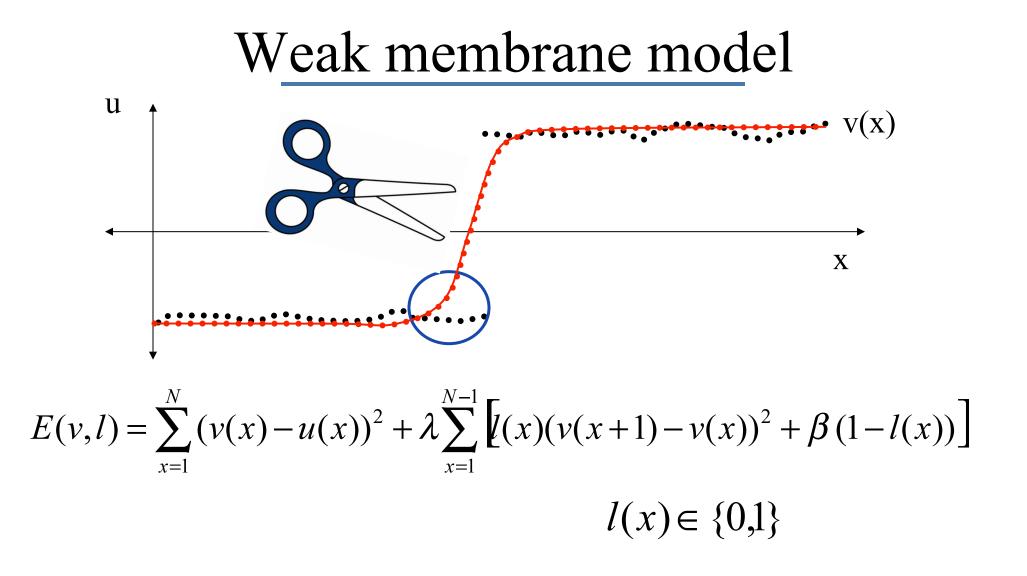
Likelihood and Prior

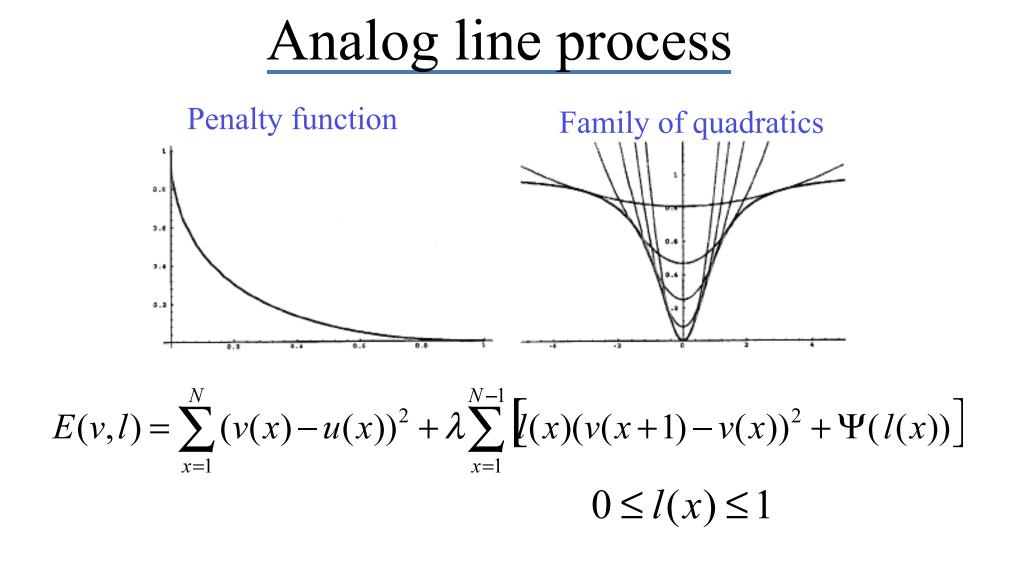
 $p(v \mid u) \propto p(u \mid v) p(v)$

$$p(u \mid v) = \prod_{x=1}^{N} \frac{1}{\sqrt{2\pi\sigma_1}} \exp(-\frac{1}{2}(u(x) - v(x))^2 / \sigma_1^2)$$

$$p(v) = \prod_{x=1}^{N-1} \frac{1}{\sqrt{2\pi\sigma_2}} \exp(-\frac{1}{2}(v_x(x))^2 / \sigma_2^2)^{\lambda}$$



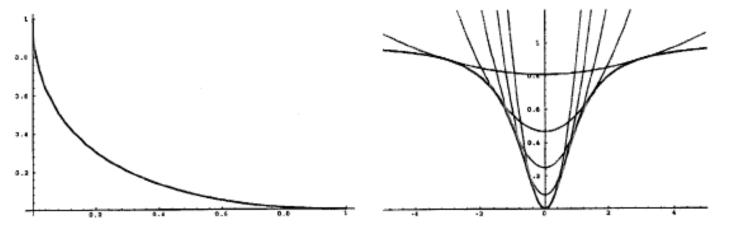




CS143 Intro to Computer Vision

Analog line process

Infimum defines a robust error function.

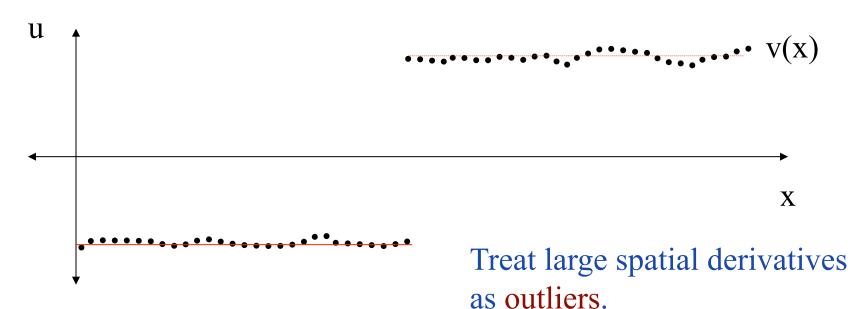


Minima are the same:

$$E(v,l) = \sum_{x=1}^{N} (v(x) - u(x))^{2} + \lambda \sum_{x=1}^{N-1} \left[l(x)(v(x+1) - v(x))^{2} + \Psi(l(x)) \right]$$

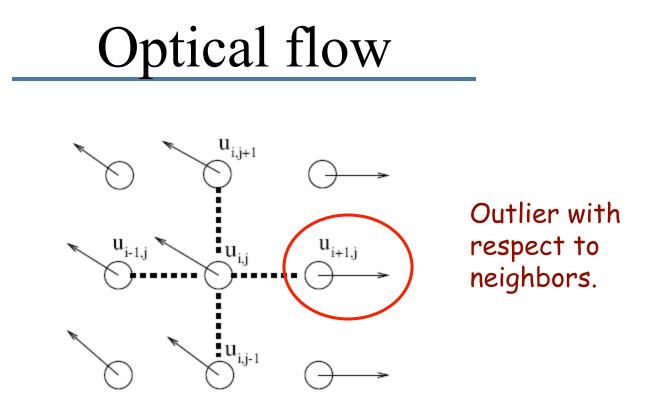
$$E(v) = \sum_{x=1}^{N} (v(x) - u(x))^{2} + \lambda \sum_{x=1}^{N-1} \rho(v(x+1) - v(x), \sigma_{2})$$

Robust Regularization



Minimize:

$$E(v) = \sum_{x=1}^{N} \rho(v(x) - u(x), \sigma_1) + \lambda \sum_{x=1}^{N-1} \rho(v(x+1) - v(x), \sigma_2)$$



Robust formulation of spatial coherence term

$$E_{s}(u,v) = \rho(u_{x}) + \rho(u_{y}) + \rho(v_{x}) + \rho(v_{y})$$

Standard Bayesian formulation

 $p(\mathbf{u}, \mathbf{v} | \mathbf{I}_1, \mathbf{I}_2) \propto p(\mathbf{I}_2 | \mathbf{u}, \mathbf{v}, \mathbf{I}_1) p(\mathbf{u}, \mathbf{v})$

Data term How second image can be generated from first image and flow fields

Spatial term Prior knowledge of flow field

$$E(\mathbf{u}, \mathbf{v}) = E_{\mathrm{D}}(\mathbf{u}, \mathbf{v}) + \lambda E_{\mathrm{S}}(\mathbf{u}, \mathbf{v})$$

 $E_D(\mathbf{u}(\mathbf{x})) = \rho(I_x(\mathbf{x})u(\mathbf{x}) + I_y(\mathbf{x})v(\mathbf{x}) + I_t(\mathbf{x}), \sigma_D)$

$$E_{S}(u,v) = \sum_{\mathbf{y}\in G(\mathbf{x})} [\rho(u(\mathbf{x}) - u(\mathbf{y}), \sigma_{S}) + \rho(v(\mathbf{x}) - v(\mathbf{y}), \sigma_{S})]$$

Objective function: $E(\mathbf{u}) = \sum_{\mathbf{x}} E_D(\mathbf{u}(\mathbf{x})) + \lambda E_S(\mathbf{u}(\mathbf{x}))$

When ρ is quadratic = "Horn and Schunck"

Optimization

$$u^{(n+1)} = u^{(n)} - \omega \frac{1}{T(u)} \frac{\partial E}{\partial u}$$

$$v^{(n+1)} = v^{(n)} - \omega \frac{1}{T(v)} \frac{\partial E}{\partial v}$$

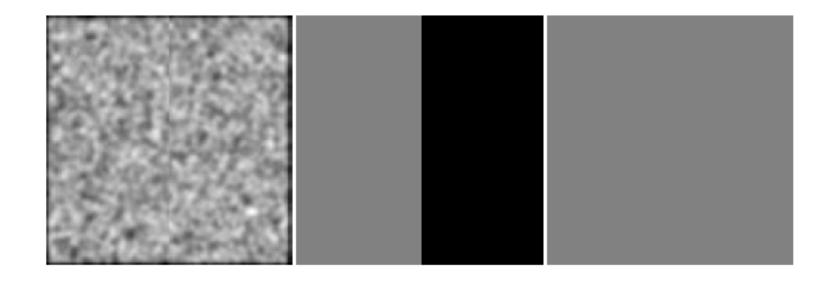
$$\frac{\partial E}{\partial u_s} = \psi(I_x u_s + I_u v_s + I_t, \sigma_D)I_x + \lambda \sum_{n \in G(s)} \psi(u_s - u_n, \sigma_S)$$

 $T(u) = \max$ of second derivative

Optimization

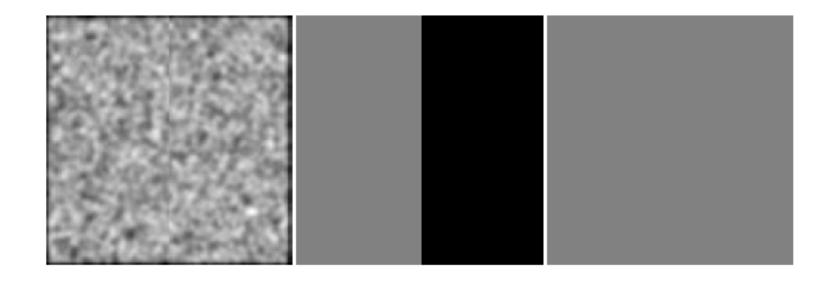
- Gradient descent
- Coarse-to-fine (pyramid)
- Deterministic annealing

Example



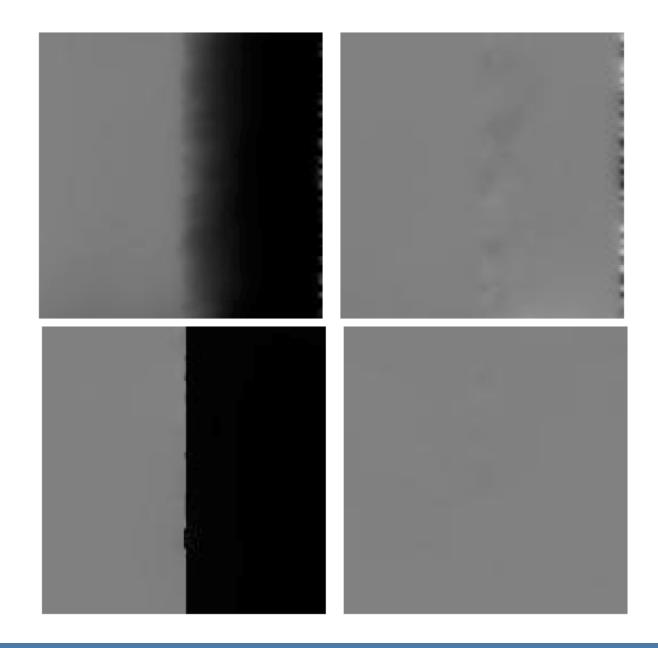
CS143 Intro to Computer Vision

Example



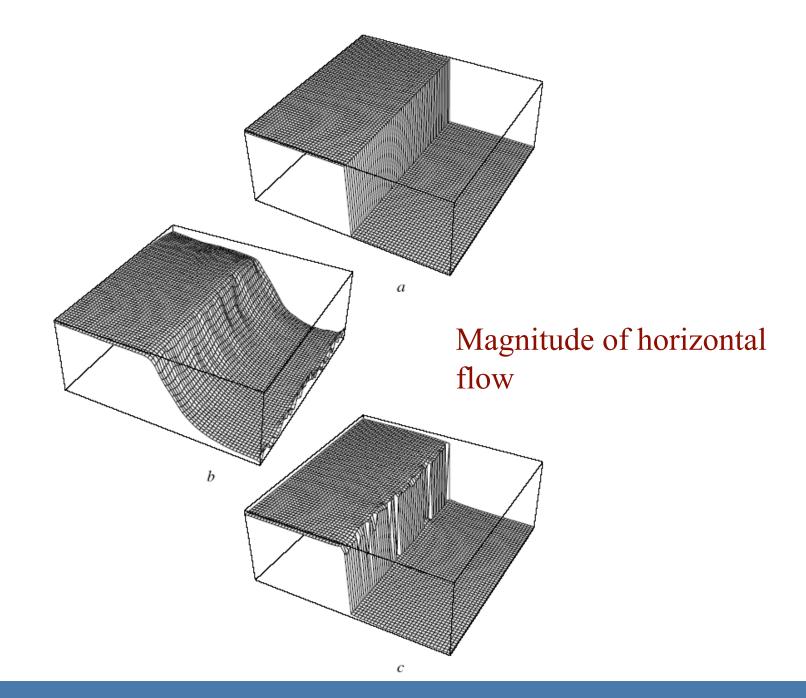
CS143 Intro to Computer Vision

Quadratic:



Robust:

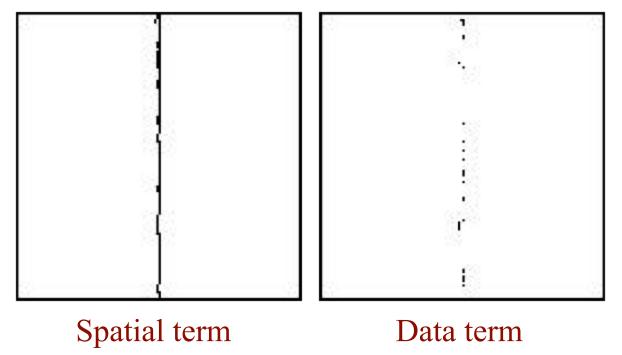
CS143 Intro to Computer Vision



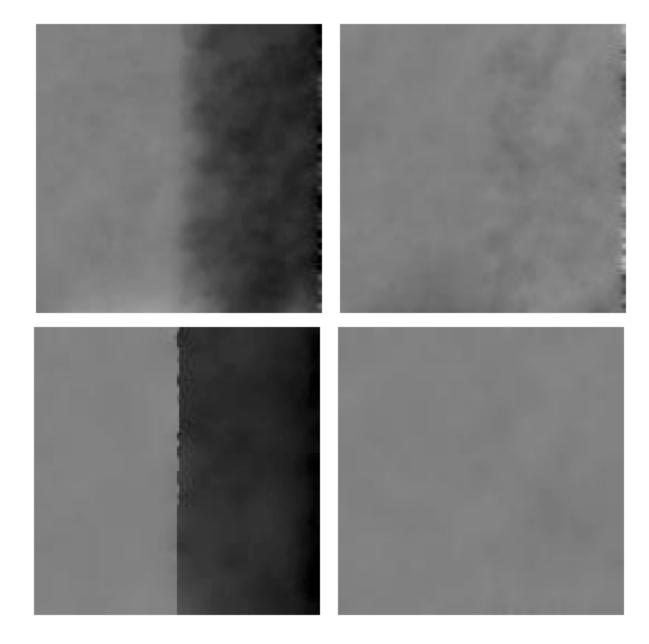
CS143 Intro to Computer Vision

Outliers

Points where the influence is reduced

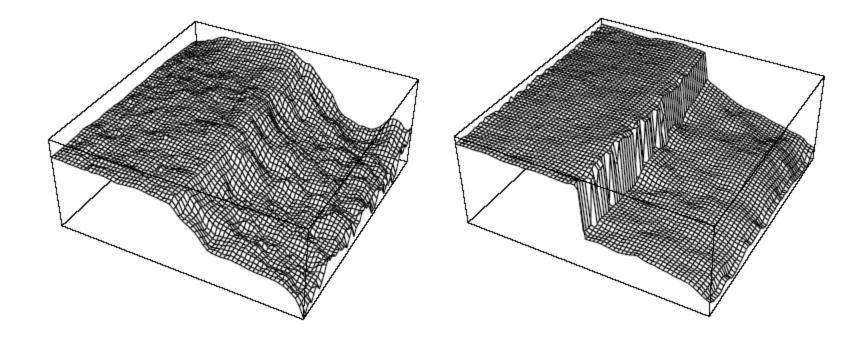


With 5% uniform random noise added to the images.



CS143 Intro to Computer Vision

Horizontal Component

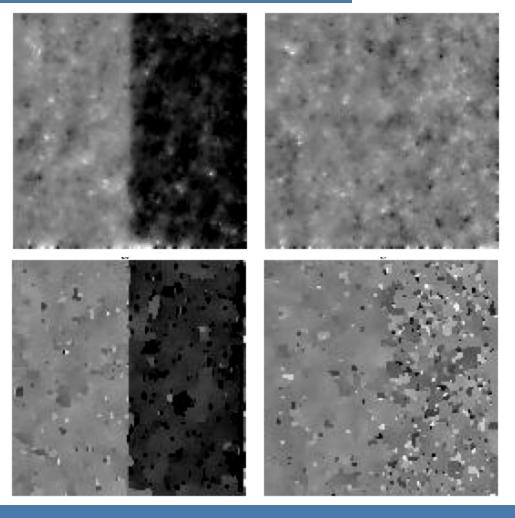


CS143 Intro to Computer Vision

More Noise

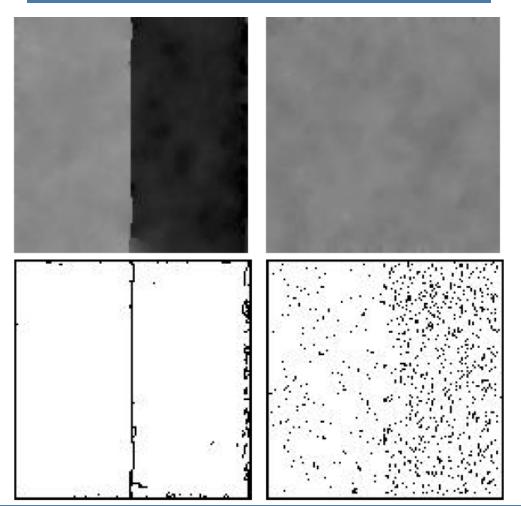
Quadratic:

Quadratic data term, robust spatial term:



CS143 Intro to Computer Vision

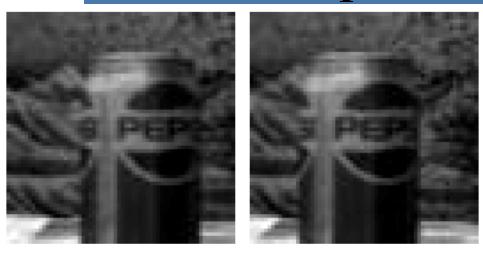
Both Terms Robust



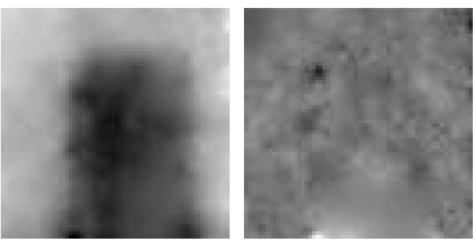
Spatial and data outliers:

Pepsi sequence

Real Sequence

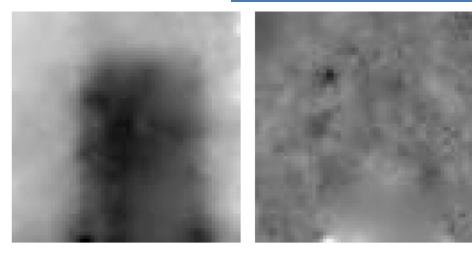


Deterministic annealing. First stage (large s):

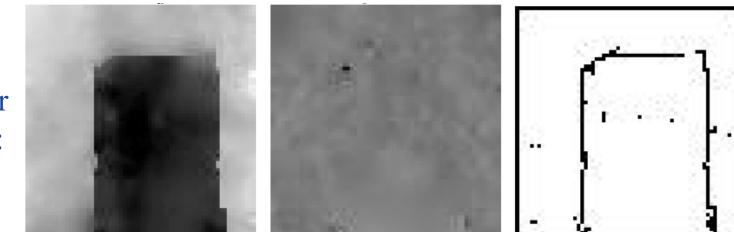


CS143 Intro to Computer Vision

Real Sequence



Final result after annealing:



CS143 Intro to Computer Vision