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Dense flow and Tracking
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Goals

* Today
— Finish dense flow
— Start tracking (e.g. for homework)

 Monday
— Particle filtering
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Optical flow

Horn & Schunck 1981 Key
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Two standard methods
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Today’s best method

«\ ‘

Improved derivatives, improved optimization, different robust function.
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Apphcatlons of Optlcal Flow
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Impressionist
effect.

Transfer motion of
real world to a
painting
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Bullet Time

Use optical flow to compute
correspondence between
different camera views. Allows
smooth interpolation between
VIEWS.
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Facial Animation

George Borshukov, Dan Piponi, Oystein Larsen, J.P.Lewis, Christina Tempelaar-Lietz
ESC Entertainment
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How?

http://http.cs.berkeley.edu/~pm/RoadWatch/tracking.mpg
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Tracking

Approach 1:

Detect an object (e.g. a face) in every frame
iIndependently.

Approach 2:

Use what you know about where the object
was in the previous frame(s) to make
predictions about the current frame and
restrict the search.
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Tracking vs Flow

Flow: track region from time t to time t+1, forget
what you knew about the region at t and then
track from t+1 to t+2. Updates the “model”
completely at every time instant.

Tracking: build some model of what you want to
track, if you know where it is at time t
estimate its motion to t+1, repeat (possibly
updating the model).
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Face tracking

* Color histograms and image gradients along contour.

http://robotics.stanford.edu/~birch/headtracker/
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Frame 1




What’s Constant?

* Need something to be “constant” to track.

 Pixel brightness — optical flow, template
tracking

— Robustness extends this but only so far
* What else could we do?
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WSL tracker

Jepson et al WSL tracker results
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What’s Constant?

* Need something to be “constant” to track.

 Pixel brightness — optical flow, template
tracking

— Robustness extends this but only so far

 What else could we do?

Subspace constancy — extend the notion of a template to a
linear subspace (EigenTracking)

Statistical feature constancy — the distribution of filter
responses remains constant.
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Homework 4

Characterize an image region by its statistics.
If the statistics differ from background, should enable tracking.

http://www.cs.toronto.edu/vis/projects/dudekfaceSequence.html
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Histograms

Compute histograms of 1) pixel values; 2) x
derivatives; 3) y derivatives.

Be careful when using hist to define the range
so that 1t 1s the same for the histograms you
want to compare (1€ hist(region(:),-x:y:X))
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Comparing histograms

Bhattacharyya coefficient between two distributions:

be(H1,H2) = i JHIG)H2(i)

Histogram of the face pixels (blue)
and another image region (red).

Distance measure: o f\/
bd(H1,H?2) = \[1-bc(H1, H?2) §

or bd(H1,H2)=—log(bc(H1,H2)) .|| _ &

1é0 140
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Bhattacharyya coefficient between
image regions
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Bhattacharyya Coetficient
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Combining pixel and derivative histograms.
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Un-normalized Likelithood

surf(exp(bc))

or \
surf(exp(bc”k)) &
O<k<=2 (e.qg.)
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Mathematical Formulation

Goal: estimate car positions at each time instant

Observations: image sequences and known background
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Mathematical Formulation
[

Define image likelihood: p(fg | car=(x.y))
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Mathematical Formulation

Likelihood:
noisy observation

p(fg | car=(x,y))

/\ <— Prior:
p(car=(x,y))

system states: car positions Posterior:
' Bayesian update
observations: images o(car=(x,y)[fg)
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Notation

* x, € R’ : internal state at K frame (hidden random
variable, e.g. position of the object in the image).

X, =[x,,X,,...,x, ]’ : history up to time step k

« z, € R°: measurement at k£ frame (observable
random variable, e.g. the given image).

Z, =[z,,z,,.,2.] :

history up to time step &
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Goal

Estimating the posterior probability p(X, |Z, )

How ??°
One idea: recursion pP(X;_1|Ziy) = pX,|Zy)
* How to realize the recursion ?

° What assumptions are necessary ?
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