Introduction to Computer Vision

Michael J. Black Nov 2009

Dense flow and Tracking

Goals

- Today
 - Finish dense flow
 - Start tracking (e.g. for homework)
- Monday
 - Particle filtering

Optical flow

"Army"

Horn & Schunck 1981

Key

Two standard methods

Today's best method

Improved derivatives, improved optimization, different robust function.

Applications of Optical Flow

Impressionist effect. Transfer motion of real world to a painting

CS143 Intro to Computer Vision

Bullet Time

Use optical flow to compute correspondence between different camera views. Allows smooth interpolation between views.

CS143 Intro to Computer Vision

Facial Animation

George Borshukov, Dan Piponi, Oystein Larsen, J.P.Lewis, Christina Tempelaar-Lietz ESC Entertainment

CS143 Intro to Computer Vision

Tracking in Images

How?

http://http.cs.berkeley.edu/~pm/RoadWatch/tracking.mpg

CS143 Intro to Computer Vision

Tracking

Approach 1:

Detect an object (e.g. a face) in every frame independently.

Approach 2:

Use what you know about where the object was in the previous frame(s) to make predictions about the current frame and restrict the search.

Tracking vs Flow

Flow: track region from time t to time t+1, forget what you knew about the region at t and then track from t+1 to t+2. Updates the "model" completely at every time instant.

Tracking: build some model of what you want to track, if you know where it is at time t estimate its motion to t+1, repeat (possibly updating the model).

Face tracking

* Color histograms and image gradients along contour.

http://robotics.stanford.edu/~birch/headtracker/

Frame 1

What's Constant?

- Need something to be "constant" to track.
- Pixel brightness optical flow, template tracking
 - Robustness extends this but only so far
- What else could we do?

WSL tracker

Jepson et al WSL tracker results

CS143 Intro to Computer Vision

What's Constant?

- Need something to be "constant" to track.
- Pixel brightness optical flow, template tracking
 - Robustness extends this but only so far
- What else could we do?

Subspace constancy – extend the notion of a template to a linear subspace (EigenTracking)

Statistical feature constancy – the distribution of filter responses remains constant.

Homework 4

Characterize an image region by its statistics. If the statistics differ from background, should enable tracking. http://www.cs.toronto.edu/vis/projects/dudekfaceSequence.html

©Michael J. Black

Histograms

Compute histograms of 1) pixel values; 2) x derivatives; 3) y derivatives.

Be careful when using hist to define the range so that it is the same for the histograms you want to compare (ie hist(region(:),-x:y:x))

Comparing histograms

Bhattacharyya coefficient between two distributions:

$$bc(H1, H2) = \sum_{i=1}^{N} \sqrt{H1(i)H2(i)}$$

Histogram of the face pixels (blue) and another image region (red).

Distance measure: $bd(H1, H2) = \sqrt{1 - bc(H1, H2)}$

Bhattacharyya coefficient between image regions

x derivatives

Bhattacharyya Coefficient

Combining pixel and derivative histograms.

Un-normalized Likelihood

Exponentiate the Bhattacharyya coefficient.

Mathematical Formulation

Goal: estimate car positions at each time instant Observations: image sequences and known background

Mathematical Formulation

Define image likelihood: p(fg | car=(x,y))

CS143 Intro to Computer Vision

Mathematical Formulation

Notation

- x_k ∈ R^d: internal state at kth frame (hidden random variable, e.g. position of the object in the image).
 X_k = [x₁, x₂,..., x_k]^T: history up to time step k
- $\mathbf{z}_k \in \mathbf{R}^c$: measurement at k^{th} frame (observable random variable, e.g. the given image).

$$\mathbf{Z}_{k} = [\mathbf{z}_{1}, \mathbf{z}_{2}, ..., \mathbf{z}_{k}]^{T}:$$

history up to time step k

Goal

Estimating the posterior probability $p(\mathbf{x}_k | \mathbf{Z}_k)$

How ???

One idea: recursion $p(\mathbf{x}_{k-1} | \mathbf{Z}_{k-1}) \implies p(\mathbf{x}_k | \mathbf{Z}_k)$

• How to realize the recursion ?

• What assumptions are necessary ?