# Introduction to Computer Vision 

Michael J. Black<br>Nov 2009

Tracking and Particle Filtering

## Goals

- Today
- Particle filtering
- Wednesday
- Binocular stereo
- Friday and beyond
- Advanced topics - state of the art
- Short intro to object recognition


## Mathematical Formulation



Goal: estimate car positions at each time instant
Observations: image sequences and known background

## Mathematical Formulation



Define image likelihood: $\mathrm{p}(\mathrm{fg} \mid \mathrm{car}=(x, y))$

## Mathematical Formulation


system states: car positions observations: images

## Notation

- $\mathbf{x}_{k} \in \mathbf{R}^{d}$ : internal state at $k^{\text {th }}$ frame (hidden random variable, e.g. position of the object in the image). $\mathbf{X}_{k}=\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right]^{T}$ : history up to time step $k$
- $\mathbf{z}_{k} \in \mathbf{R}^{c}$ : measurement at $k^{\text {th }}$ frame (observable random variable, e.g. the given image).

$$
\begin{aligned}
\mathbf{Z}_{k}= & {\left[\mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \mathbf{z}_{k}\right]^{T}: } \\
& \text { history up to time step } k
\end{aligned}
$$

## Goal

## Estimating the posterior probability $p\left(\mathbf{x}_{k} \mid \mathbf{Z}_{k}\right)$

## How ???

One idea: recursion $p\left(\mathbf{x}_{k-1} \mid \mathbf{Z}_{k-1}\right) \Rightarrow p\left(\mathbf{x}_{k} \mid \mathbf{Z}_{k}\right)$

- How to realize the recursion?
- What assumptions are necessary?


## Recursive Formula: Approximation

$$
\begin{aligned}
& p\left(\mathbf{x}_{k} \mid \mathbf{Z}_{k}\right) \\
&= p\left(\mathbf{x}_{k} \mid \mathbf{Z}_{k-1}, \mathbf{Z}_{k}\right) \\
& \propto p\left(\mathbf{z}_{k} \mid \mathbf{x}_{k}, \mathbf{Z}_{k-1}\right) p\left(\mathbf{x}_{k} \mid \mathbf{Z}_{k-1}\right) \\
& \propto \begin{array}{l}
\text { Bayes rule: } \\
p(a \mid b)=p(b \mid a) p(a) / p(b)
\end{array} \\
& \propto \begin{array}{l}
\text { Assumption: } \\
p\left(\mathbf{z}_{k} \mid \mathbf{x}_{k}, \mathbf{Z}_{k-1}\right)=p\left(\mathbf{z}_{k} \mid \mathbf{x}_{k}\right)
\end{array} \\
& \propto p\left(\mathbf{z}_{k} \mid \mathbf{x}_{k}\right) \int p\left(\mathbf{x}_{k-1}\right) \\
& \propto p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{Z}_{k-1}\right) p\left(\mathbf{x}_{k-1} \mid \mathbf{Z}_{k-1}\right) d \mathbf{x}_{k-1} \\
& \begin{array}{l}
\text { Assumption: } \\
\left.p\left(\mathbf{x}_{k}\left|\mathbf{x}_{k-1}\right| \mathbf{Z}_{k-1}\right)=p\left(\mathbf{x}_{k-1}\right) p\left(\mathbf{x}_{k-1} \mid \mathbf{Z}_{k-1}\right) d \mathbf{x}_{k-1}\right)
\end{array} \\
& \hline
\end{aligned}
$$

## Bayesian Formulation

$$
p\left(\mathbf{x}_{k} \mid \mathbf{Z}_{k}\right)=\kappa p\left(\mathbf{z}_{k} \mid \mathbf{x}_{k}\right) \int p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}\right) p\left(\mathbf{x}_{k-1} \mid \mathbf{Z}_{k-1}\right) d \mathbf{x}_{k-1}
$$

$p\left(\mathbf{z}_{k} \mid \mathbf{x}_{k}\right)$ : likelihood
$p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}\right)$ : temporal prior
$p\left(\mathbf{x}_{k-1} \mid \mathbf{Z}_{k-1}\right)$ : posterior probability at previous time step
$\kappa$ : normalizing term

## Bayesian Graphical Model $\mathbf{x}_{k-1} \xrightarrow{\mathbf{x}_{k}} \mathrm{O}^{\longrightarrow} \mathrm{O}^{\mathbf{x}_{k+1}}$ <br> 

## Assumptions:

$$
\begin{gathered}
p\left(\mathbf{z}_{k} \mid \mathbf{x}_{k}, \mathbf{Z}_{k-1}\right)=p\left(\mathbf{z}_{k} \mid \mathbf{x}_{k}\right), \quad p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{Z}_{k-1}\right)=p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}\right) \\
p\left(\mathbf{x}_{k} \mid \mathbf{X}_{k-1}\right)=p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}\right)
\end{gathered}
$$

## Estimators

Assume the posterior probability $p\left(\mathbf{x}_{k} \mid \mathbf{Z}_{k}\right)$ is known:

- posterior mean

$$
\hat{\mathbf{x}}_{k}=E\left(\mathbf{x}_{k} \mid \mathbf{Z}_{k}\right)
$$

- maximum a posteriori (MAP)

$$
\hat{\mathbf{x}}_{k}=\arg \max p\left(\mathbf{x}_{k} \mid \mathbf{Z}_{k}\right)
$$

$$
p\left(\mathbf{x}_{k} \mid \mathbf{Z}_{k}\right)
$$

## General Model

- $p\left(\mathbf{x}_{k} \mid \mathbf{Z}_{k}\right)$ can be an arbitrary, non-Gaussian, multi-modal distribution.
- The recursive equation has no explicit solution, but can be numerically approximated using Monte Carlo techniques.
- If both likelihood and prior are Gaussian, the solution has closed form and the two estimators (posterior mean \& MAP) are the same. Such model is known as the Kalman filter. (Kalman, 1960)


## Where's the edge of the glass?



## Multi-modal likelihood



## Multi-modal likelihood



## Multi-Modal Likelihoods

Measurement clutter in natural images causes likelihood functions to have multiple, local maxima.

[Isard \& Blake, "Condensation - conditional density propagation for visual tracking." IJCV, 1998]


Michael Isard

## Multi-Modal Likelihood

likelihood


How can we represent this?

## Non-Parametric Approximation

- We could sample at regular intervals


Problems?
most samples have low probability - wasted computation
How finely to discretize
High dimensional space - discretization impractical

## Factored Sampling



Weighted samples $\quad S=\left\{\left(\mathbf{x}^{(i)}, w^{(i)}\right) ; i=1 \ldots N\right\}$
Normalized likelihood:

$$
w_{t}^{(n)}=\frac{p\left(\mathbf{z}_{t} \mid \mathbf{x}_{t}^{(n)}\right)}{\sum_{i=1}^{N} p\left(\mathbf{z}_{t} \mid \mathbf{x}_{t}^{(i)}\right)}
$$

## Bayesian Tracking

Posterior over model parameters given an image sequence.

$$
\begin{aligned}
& \begin{aligned}
p\left(\mathbf{x}_{t} \mid \mathbf{Z}_{t}\right)= \\
\kappa p\left(\mathbf{z}_{t} \mid \mathbf{x}_{t}\right)
\end{aligned} \\
& \text { Likelihood of }
\end{aligned} \begin{array}{r}
\text { Temporal model (prior) } \\
\left.p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right) \mid p\left(\mathbf{x}_{t-1} \mid \mathbf{Z}_{t-1}\right)\right) d \mathbf{x}_{t-1}
\end{array} \begin{aligned}
& \text { Posterior from } \\
& \text { previous time i }
\end{aligned}
$$

observing the image features given the
model parameters

Approximate by Monte
Carlo sampling

## Particle Filter

Posterior $p\left(\mathbf{x}_{t-1} \mid \mathbf{Z}_{t-1}\right)$


## Particle Filter

Posterior $p\left(\mathbf{x}_{t-1} \mid \mathbf{Z}_{t-1}\right)$ sample


## Monte-Carlo Sampling

Given a weighted sample set $S=\left\{\left(\mathbf{x}^{(i)}, w^{(i)}\right) ; i=1 \ldots N\right\}$


## Particle Filter

Posterior $p\left(\mathbf{x}_{t-1} \mid \mathbf{Z}_{t-1}\right)$



Isard \& Blake ‘96

## Particle Filter

Posterior $p\left(\mathbf{x}_{t-1} \mid \mathbf{Z}_{t-1}\right)$

$$
\begin{aligned}
& \text { sample } \\
& \text { Temporal dynamics } \\
& p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right) \\
& \\
& \text { sample }
\end{aligned}
$$

Likelihood $p\left(\mathbf{z}_{t} \mid \mathbf{x}_{t}\right)$


## Particle Filter

Posterior $p\left(\mathbf{x}_{t-1} \mid \mathbf{Z}_{t-1}\right)$

$$
\begin{aligned}
& \text { sample } \\
& \text { Temporal dynamics } \\
& p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right) \\
& \| \text { sample }
\end{aligned}
$$

Likelihood $p\left(\mathbf{z}_{t} \mid \mathbf{x}_{t}\right)$
$\downarrow$ normalize
Posterior $p\left(\mathbf{x}_{t} \mid \mathbf{Z}_{t}\right)$


## Pseudocode

condense1step
$\%$ generate cumulative distribution for posterior at $\mathrm{t}-1$
\% generate a vector of uniform random numbers.
$\%$ if a the number is greater than refreshRate then
$\%$ generate a vector of uniform random numbers
$\%$ use these to search the cumulative probability
$\%$ find the indices of the corresponding particles
$\%$ for each of these particles, predict the new state
$\%$ for each of these new states compute the log likelihood
$\%$ else generate a particle at random and compute its log likelihood.
$\%$ find the maximum log likelihood and subtract it from all the other log likelihoods
$\%$ construct the posterior at time $t$ by exponentiating all the log likelihoods and normalizing so they sum to 1 .

## Particle Filter

Michael Isard

## Tracking in Clutter



Isard, M., Blake, and A., Condensation - Conditional density propagation for visual tracking, in Int. J. Computer Vision, vol. 28, no. 1, pp. 5-28, 1998

