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Goals 

• Today 

– Particle filtering 

• Wednesday 

– Binocular stereo 

• Friday and beyond 

– Advanced topics – state of the art 

– Short intro to object recognition 
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Mathematical Formulation  

Goal: estimate car positions at each time instant 

Observations: image sequences and known background  
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Mathematical Formulation  

Define image likelihood: p(fg | car=(x,y)) 
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Mathematical Formulation  

system states: car positions 

observations: images  

Likelihood: 

noisy observation 

p(fg | car=(x,y)) 

Prior:  

p(car=(x,y)) 

Posterior: 

Bayesian update 

p(car=(x,y)|fg)  
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Notation 

• internal state at kth frame (hidden random 

variable, e.g. position of the object in the image).  

                                     history up to time step k  

•                measurement at kth frame (observable 

random variable, e.g. the given image). 

  history up to time step k 
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Goal 

Estimating the posterior probability                      

How ??? 

One idea: recursion 

• How to realize the recursion ? 

•  What assumptions are necessary ? 
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Recursive Formula: Approximation 
Bayes rule: 

p(a |b) = p(b | a)p(a) / p(b)

Assumption: 

Integration: 
Assumption: 
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Bayesian Formulation 

likelihood 

temporal prior 

posterior probability at previous time step 

normalizing term 
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Bayesian Graphical Model 

Assumptions: 
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Assume the posterior probability                      is known: 

Estimators 

• posterior mean 

• maximum a posteriori (MAP) 
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General Model 

• can be an arbitrary, non-Gaussian, 
multi-modal distribution.  

• The recursive equation has no explicit solution, 
but can be numerically approximated using Monte 
Carlo techniques. 

• If both likelihood and prior are Gaussian, the 
solution has closed form and the two estimators 
(posterior mean & MAP) are the same. Such 
model is known as the Kalman filter.  (Kalman, 1960) 
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Where’s the edge of the glass? 

CS143 Intro to Computer Vision 
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Multi-modal likelihood 

CS143 Intro to Computer Vision 
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Multi-modal likelihood 

CS143 Intro to Computer Vision 
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Multi-Modal Likelihoods 

Measurement clutter in natural 

images causes likelihood 

functions to have multiple, 

local maxima. 

[Isard & Blake, “Condensation - conditional density propagation for 

visual tracking.”  IJCV, 1998] 
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Michael Isard 
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Multi-Modal Likelihood 

State (e.g. position) 

likelihood 

How can we represent this? 
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Non-Parametric Approximation 

most samples have low probability – wasted computation 

How finely to discretize 

High dimensional space – discretization impractical 

We could sample at regular intervals 

Problems? 
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Factored Sampling 

Weighted samples                                

weighted 
samples 

wt
(n )

=
p(z t |x t

(n ) )

p(z t |x t
( i ) )

i=1

N

Normalized likelihood: 
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p(x t |Z t ) =

p(z t x t ) (p(x t |x t 1) p(x t 1 |Z t 1))dx t 1

Posterior over model parameters given  

an image sequence. 

Likelihood of 

observing the image features 

given the  

model parameters 

Temporal model (prior) 

Posterior from 

previous time instant 

Approximate by Monte 

Carlo sampling 
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Isard & Blake ‘96 

Posterior p(xt 1 |Zt 1)
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Posterior p(xt 1 |Zt 1)

Isard & Blake ‘96 
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Monte-Carlo Sampling 

Given a weighted sample set 

sample 

N 

1 

0 
1 

Cumulative distribution of weights 
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Temporal dynamics 

Posterior p(xt 1 |Zt 1)

Isard & Blake ‘96 
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Temporal dynamics 

Likelihood p(zt |xt)

Posterior p(xt 1 |Zt 1)

Isard & Blake ‘96 
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Temporal dynamics 

Posterior 

Likelihood 

p(xt |Zt)

Posterior 

p(zt |xt)

p(xt 1 |Zt 1)

Isard & Blake ‘96 
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Pseudocode 
condense1step 

% generate cumulative distribution for posterior at t-1  

…. 

% generate a vector of uniform random numbers. 

% if a the number is greater than refreshRate then 

% generate a vector of uniform random numbers 

% use these to search the cumulative probability 

% find the indices of the corresponding particles 

% for each of these particles, predict the new state 

% for each of these new states compute the log likelihood 

% else generate a particle at random and compute its log likelihood. 

% find the maximum log likelihood and subtract it from all the other log 
likelihoods 

% construct the posterior at time t by exponentiating all the log likelihoods 
and normalizing so they sum to 1. 
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Particle Filter 

Michael Isard 
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Tracking in Clutter 

Isard, M., Blake, and A., Condensation — Conditional density 

propagation for visual tracking, in Int. J. Computer Vision, vol. 28, 

no. 1, pp. 5–28, 1998 


