Introduction to Computer Vision

Michael J. Black Nov 2009

Tracking and Particle Filtering

Goals

- Today
 - Particle filtering
- Wednesday
 - Binocular stereo
- Friday and beyond
 - Advanced topics state of the art
 - Short intro to object recognition

Mathematical Formulation

Goal: estimate car positions at each time instant Observations: image sequences and known background

Mathematical Formulation

Define image likelihood: p(fg | car=(x,y))

CS143 Intro to Computer Vision

Mathematical Formulation

Notation

- x_k ∈ R^d: internal state at kth frame (hidden random variable, e.g. position of the object in the image).
 X_k = [x₁, x₂,..., x_k]^T: history up to time step k
- $\mathbf{z}_k \in \mathbf{R}^c$: measurement at k^{th} frame (observable random variable, e.g. the given image).

$$\mathbf{Z}_{k} = [\mathbf{z}_{1}, \mathbf{z}_{2}, ..., \mathbf{z}_{k}]^{T}:$$

history up to time step k

Goal

Estimating the posterior probability $p(\mathbf{x}_k | \mathbf{Z}_k)$

How ???

One idea: recursion $p(\mathbf{x}_{k-1} | \mathbf{Z}_{k-1}) \implies p(\mathbf{x}_k | \mathbf{Z}_k)$

• How to realize the recursion ?

• What assumptions are necessary ?

Bayesian Formulation

$$p(\mathbf{x}_{k}|\mathbf{Z}_{k}) = \kappa p(\mathbf{z}_{k}|\mathbf{x}_{k}) \int p(\mathbf{x}_{k}|\mathbf{x}_{k-1}) p(\mathbf{x}_{k-1}|\mathbf{Z}_{k-1}) d\mathbf{x}_{k-1}$$

$p(\mathbf{z}_k | \mathbf{x}_k)$: likelihood

 $p(\mathbf{x}_k | \mathbf{x}_{k-1})$: temporal prior

 $p(\mathbf{x}_{k-1} | \mathbf{Z}_{k-1})$: posterior probability at previous time step κ : normalizing term

CS143 Intro to Computer Vision

Estimators

Assume the posterior probability $p(\mathbf{x}_k | \mathbf{Z}_k)$ is known:

• posterior mean

$$\hat{\mathbf{x}}_k = E(\mathbf{x}_k \mid \mathbf{Z}_k)$$

• maximum *a posteriori* (MAP) $\hat{\mathbf{x}}_{k} = \arg \max p(\mathbf{x}_{k} | \mathbf{Z}_{k})$

General Model

- $p(\mathbf{x}_k | \mathbf{Z}_k)$ can be an arbitrary, non-Gaussian, multi-modal distribution.
- The recursive equation has no explicit solution, but can be numerically approximated using Monte Carlo techniques.
- If both *likelihood* and *prior* are Gaussian, the solution has closed form and the two estimators (posterior mean & MAP) are the same. Such model is known as the Kalman filter. (Kalman, 1960)

Where's the edge of the glass?

Multi-modal likelihood

CS143 Intro to Computer Vision

Multi-modal likelihood

Multi-Modal Likelihoods

Measurement clutter in natural images causes likelihood functions to have multiple, local maxima.

[Isard & Blake, "Condensation - conditional density propagation for visual tracking." IJCV, 1998]

Michael Isard

How can we represent this?

CS143 Intro to Computer Vision

Non-Parametric Approximation

• We could sample at regular intervals

Problems?

most samples have low probability – wasted computation

How finely to discretize

High dimensional space – discretization impractical

Bayesian Tracking

Posterior over model parameters given an image sequence.

Particle Filter

Posterior
$$p(\mathbf{X}_{t-1} | \mathbf{Z}_{t-1})$$

Isard & Blake '96

CS143 Intro to Computer Vision

Monte-Carlo Sampling

Given a weighted sample set $S = \{(\mathbf{x}^{(i)}, w^{(i)}); i = 1...N\}$

Pseudocode

condense1step

% generate cumulative distribution for posterior at t-1

····

% generate a vector of uniform random numbers.

% if a the number is greater than refreshRate then

% generate a vector of uniform random numbers

% use these to search the cumulative probability

% find the indices of the corresponding particles

% for each of these particles, predict the new state

% for each of these new states compute the *log* likelihood

% else generate a particle at random and compute its log likelihood.

- % find the maximum log likelihood and subtract it from all the other log likelihoods
- % construct the posterior at time t by exponentiating all the log likelihoods and normalizing so they sum to 1.

Particle Filter

Michael Isard

CS143 Intro to Computer Vision

Tracking in Clutter

Isard, M., Blake, and A., Condensation — Conditional density propagation for visual tracking, in Int. J. Computer Vision, vol. 28, no. 1, pp. 5–28, 1998