Introduction to Computer Vision

Michael J. Black
Nov 2009

Stereo

Goals

- Today
- Binocular stereo
- Friday
- Either object recognition or human shape and pose.

Binocular Stereo
 \searrow

Binocular Stereo

Binocular Stereo

Left

binocular disparity

From known geometry of the cameras and estimated disparity, recover depth in the scene

Stereo Geometry

Scharstein
camera camera

Stereo Geometry

Stereo Geometry

Stereo Geometry

Disparity d
 = difference in image position

Stereo Geometry

Stereo Geometry

Binocular Disparity

$\mathrm{Z}(\mathrm{x}, \mathrm{y})$ is depth at pixel (x, y) $\mathrm{d}(\mathrm{x}, \mathrm{y})$ is disparity

Estimate:

$$
Z(x, y)=\frac{f b}{d(x, y)}
$$

Left

Binocular Disparity

$Z(x, y)$ is depth at pixel (x, y) $\mathrm{d}(\mathrm{x}, \mathrm{y})$ is disparity

Estimate:

$$
Z(x, y)=\frac{f b}{d(x, y)}
$$

Left

Do I need to consider this region?

Epipolar Geometry

Epipolar Geometry

Epipolar Geometry

Epipolar Geometry

Epipolar Geometry

Possible matches for p_{1} are constrained to lie along the epipolar line in the other image

Epipole

- Every plane through the baseline is an epipolar plane, and determines a pair of epipolar lines in the two images
- Two systems of epipolar lines are obtained, each system intersects in a point, the epipole
- The epipole is the projection of the center of the other camera

©Michael J. Black

Rectification

Rectification aligns epipolar lines with scanlines.

- warp images

Szeliski and Fleet

Rectification

Szeliski and Fleet
CS143 Intro to Computer Vision
©Michael J. Black

Matching

* Matching only has to occur along epipolar lines.
* Now in the simpler binocular case where the cameras are pointing forward.
* Compare with optical flow.

Stereo Correspondence

- Search over disparity to find correspondences
- Range of disparities to search over can change dramatically within a single image pair.

Correspondence Using SSD

Sum of Squared (Pixel) Differences

w_{L} and w_{R} are corresponding m by m windows of pixels.

The SSD cost measures the intensity differenceas a function of disparity :
$\operatorname{SSD}_{r}(x, y, d)=\sum_{\left(x^{\prime}, y^{\prime}\right) \in W_{m}(x, y)}\left(I_{L}\left(x^{\prime}, y^{\prime}\right)-I_{R}\left(x^{\prime}-d, y^{\prime}\right)\right\}^{2}$

Dealing with ambiguity

Many repeated structures

Baseline b 2b 3b 4b 5b 6b 7b 8b 9b

* Collect multiple views with different baselines.
M. Okutomi, T. Kanade, Multiple-Baseline Stereo

(f)

(g)

Fig. 5. SSD values versus inverse distance: (a) $B=b$; (b) $B=2 b$; (c) $B=3 b$; (d) $B=4 b$; (e) $B=5 b$; (f) $B=6 b$; (g) $B=7 b$; (h) $B=8 b$. $B=3 b$; (d) $B=4 b$; (e) $B=5 b$; (f) $B=6 b$; (g) $B=7 b$; (h) $B=8 b$.
The horizontal axis is normalized such that $8 b F=1$.

Fig. 6. Combining two stereo pairs with different baselines.

Fig. 7. Combining multiple baseline stereo pairs.
Kanade, Multiple-Baseline Stereo

Matching

- Even when the cameras are identical models, there can be differences in gain and sensitivity.
- The cameras do not see exactly the same surfaces, so their overall light levels can differ.
- occlusion

$$
E_{r}(x, y, d)=\sum_{\left(x^{\prime}, y^{\prime}\right) \in W_{m}(x, y)} \rho\left(I_{L}\left(x^{\prime}, y^{\prime}\right)-I_{R}\left(x^{\prime}-d, y^{\prime}\right)\right)
$$

Robust matching function.
Looks like optical flow. Why don't we linearize this?

Matching

- Even when the cameras are identical models, there can be differences in gain and sensitivity.
- The cameras do not see exactly the same surfaces, so their overall light levels can differ.
- occlusion

$$
E_{r}(x, y, d, a, b)=\sum_{\left(x^{\prime}, y^{\prime}\right) \in W_{m}(x, y)} \rho\left(I_{L}\left(x^{\prime}, y^{\prime}\right)-\left(a I_{R}\left(x^{\prime}-d, y^{\prime}\right)+b\right)\right)
$$

Can add parameters to model illumination differences between cameras.

Correspondence Using SSD

Disparity Map

Images courtesy of Point Grey Research

Bayesian Interpretation

$$
\mathrm{p}_{\mathrm{M}}\left(\mathbf{d} \mid \mathrm{I}_{\mathrm{L}}, \mathrm{I}_{\mathrm{R}}\right)
$$

How do we proceed?

Bayesian inference

Prior model

$$
p_{\mathrm{P}}(\boldsymbol{d})
$$

Likelihood model $\quad p_{\mathrm{M}}\left(\mathrm{I}_{\mathrm{L}}, \mathrm{I}_{\mathrm{R}} \mid \boldsymbol{d}\right)$
Posterior model

$$
p\left(\boldsymbol{d} \mid \mathrm{I}_{\mathrm{L}}, \mathrm{I}_{\mathrm{R}}\right)=k p_{\mathrm{M}}\left(\mathrm{I}_{\mathrm{L}}, \mathrm{I}_{\mathrm{R}} \mid \boldsymbol{d}\right) p_{\mathrm{P}}(\boldsymbol{d})
$$

Maximum a Posteriori (MAP estimate): $\operatorname{maximize} p\left(\boldsymbol{d} \mid \mathrm{I}_{\mathrm{L}}, \mathrm{I}_{\mathrm{R}}\right)$

