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Goals

* Today
— Binocular stereo
* Friday

— Either object recognition or human shape and
pose.
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Binocular Stereo
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Binocular Stereo
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Binocular Stereo
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Binocular Stereo
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Binocular Stereo
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Binocular Stereo
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Binocular Stereo

From known geometry
of the cameras and
estimated disparity,
recover depth in the
scene
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Stereo Geometry
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Stereo Geometry
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Stereo Geometry
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Disparity d
= difference in image position
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Stereo Geometry

Disparity d
= difference in image position
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Stereo Geometry
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Binocular Disparity

Z(x,y) is depth at pixel (x, y)

d(x, y) 1s disparity
Estimate:
Z(x,y)=
d(x,y)

Right

Search for best match
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Binocular Disparity

Z(x,y) is depth at pixel (x, y)

d(x, y) 1s disparity
Estimate:
Z(x,y)=
d(x,y)
Left Right

.

Do I need to consider
this region?
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pipolar Geometry
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Epipolar Geometry
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Epipolar Geometry

epipolar plane \ p

epipolar lines
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Epipolar Geometry

Possible matches for p, are constrained to lie
along the epipolar line in the other image
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Epipole
* Every plane through the baseline 1s an epipolar plane,
and determines a pair of epipolar lines in the two 1mages

« Two systems of epipolar lines are obtained, each system
intersects 1n a point, the epipole

* The epipole 1s the projection of the center of the other

camera

epipolar lines epipolar lines

Baseline
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Rectification

Rectification aligns epipolar lines with scanlines.
- warp images

Szeliski and Fleet
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Rectification
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Szeliski and Fleet
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Matching

* Matching only has to occur along epipolar lines.

* Now 1n the simpler binocular case where the cameras are
pointing forward.

* Compare with optical flow.
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Stereo Correspondence

» Search over disparity to find correspondences

* Range of disparities to search over can change
dramatically within a single 1mage pair.
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Correspondence Using SSD

Left Right

SSD error h

disparity
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Sum of Squared (Pixel)

Differences
Left Right
T SN

(x;,y.) (x,—=d,y;)

w, and w, are corresponding m by m windows of pixels.

The SSD cost measures the intensity differenceas a function of disparity :
SSD,(x.y.d)= Y (1, )~ I (x'=d.y D

(xyNEW,, (x,)
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Dealing with ambiguity
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Many repeated structures
Baseline b 2b 3b 4b 5b 6b 7b 8b 9b

* Collect multiple views with different baselines.

M. Okutomi, T. Kanade, Multiple-Baseline Stereo
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Fig. 5. SSD values versus inverse distance: (a) B = b; (b) B = 2b; (c)
B = 3b; (d) B = 4b; (e) B = 5b; (f) B = 6b; (g) B = 7b; (h) B = 8b.
The horizontal axis is normalized such that 8bF = 1. Fig. 7. Combining multiple baseline stereo pairs.

M. Okutomi, T. Kanade, Multiple-Baseline Stereo
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Matching

 Even when the cameras are identical models, there can be
differences in gain and sensitivity.

» The cameras do not see exactly the same surfaces, so their
overall light levels can differ.
— occlusion

E,,()C,y,d)z ZP(IL(X'D.V')_]R(x'_day'))

(x', ¥ )W, (x,)

Robust matching function.

Looks like optical flow. Why don't we linearize this?

CS143 Intro to Computer Vision ©Michael J. Black



Matching

 Even when the cameras are identical models, there can be
differences in gain and sensitivity.

» The cameras do not see exactly the same surfaces, so their
overall light levels can differ.
— occlusion

E (x,y,d,a,b)= Z p, (x',y)—(al,(x'-d,y")+ D))

(x',yheW,, (x,y)

Can add parameters to model illumination
differences between cameras.
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Correspondence Using SSD

Left Disparity Map

Images courtesy of Point Grey Research
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Bayesian Interpretation

pu(d | I, IR)

How do we proceed?
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Bayesian inference

Prior model pp(d)
Likelihood model  py(1;, 15| d)
Posterior model

pld |1, Iz) =k p\(1y, Iy| d) pp(d)

Maximum a Posterior1t (MAP estimate):

maximize p(d | 1;, I})
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