Introduction to Computer Vision

Michael J. Black Nov 2009

Stereo

CS143 Intro to Computer Vision

Goals

- Today
 - Binocular stereo
- Friday
 - Either object recognition or human shape and pose.

CS143LeftoimageVision

cs14Right image ision

Binocular Stereo

Left

CS143 Intro to Computer Vision

Binocular Stereo

CS143 Intro to Computer Vision

Scharstein

CS143 Intro to Computer Vision

CS143 Intro to Computer Vision

CS143 Intro to Computer Vision

Possible matches for p_1 are constrained to lie along the epipolar line in the other image

Epipole

- Every plane through the baseline is an epipolar plane, and determines a pair of epipolar lines in the two images
- Two systems of epipolar lines are obtained, each system intersects in a point, the *epipole*
- The epipole is the projection of the center of the other camera

Rectification

Rectification aligns epipolar lines with scanlines. - warp images

Szeliski and Fleet

CS143 Intro to Computer Vision

Rectification

Szeliski and Fleet

CS143 Intro to Computer Vision

Matching

- * Matching only has to occur along epipolar lines.
- * Now in the simpler binocular case where the cameras are pointing forward.
- * Compare with optical flow.

Stereo Correspondence

- Search over disparity to find correspondences
- Range of disparities to search over can change dramatically within a single image pair.

CS143 Intro to Computer Vision

Correspondence Using SSD

Right

CS143 Intro to Computer Vision

Sum of Squared (Pixel) Differences

 w_L and w_R are corresponding *m* by *m* windows of pixels.

The SSD cost measures the intensity difference as a function of disparity: $SSD_r(x, y, d) = \sum_{(x', y') \in W_m(x, y)} (I_L(x', y') - I_R(x'-d, y'))^2$

Dealing with ambiguity

Many repeated structures

* Collect multiple views with different baselines.

M. Okutomi, T. Kanade, Multiple-Baseline Stereo

CS143 Intro to Computer Vision

Fig. 7. Combining multiple baseline stereo pairs. M. Okutomi, T. Kanade, Multiple-Baseline Stereo

©Michael J. Black

Matching

- Even when the cameras are identical models, there can be differences in gain and sensitivity.
- The cameras do not see exactly the same surfaces, so their overall light levels can differ.

- occlusion

$$E_{r}(x, y, d) = \sum_{(x', y') \in W_{m}(x, y)} \rho(I_{L}(x', y') - I_{R}(x'-d, y'))$$

Robust matching function.

Looks like optical flow. Why don't we linearize this?

Matching

- Even when the cameras are identical models, there can be differences in gain and sensitivity.
- The cameras do not see exactly the same surfaces, so their overall light levels can differ.

- occlusion

$$E_{r}(x,y,d,a,b) = \sum_{(x',y')\in W_{m}(x,y)} \rho(I_{L}(x',y') - (aI_{R}(x'-d,y')+b))$$

Can add parameters to model illumination differences between cameras.

Correspondence Using SSD

Left

Images courtesy of Point Grey Research

Disparity Map

CS143 Intro to Computer Vision

Bayesian Interpretation

$p_{M}(\mathbf{d} \mid I_{L}, I_{R})$

How do we proceed?

CS143 Intro to Computer Vision

Bayesian inference

Prior model $p_{P}(d)$ Likelihood model $p_{M}(I_{L}, I_{R} | d)$ Posterior model $p(d | I_{L}, I_{R}) = k p_{M}(I_{L}, I_{R} | d) p_{P}(d)$

Maximum a Posteriori (MAP estimate): maximize $p(\mathbf{d} | I_L, I_R)$