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Goals 

• Today 

– Finish stereo 

– Start something new 

• Monday 

– Finish something new 
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Project 

• Proposals evaluated over weekend 

• Due date extended to Dec 16. 
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Pseudocode 
condense1step 

% generate cumulative distribution for posterior at t-1  

…. 

% generate a vector of uniform random numbers. 

% if a the number is greater than refreshRate then 

% generate a vector of uniform random numbers 

% use these to search the cumulative probability 

% find the indices of the corresponding particles 

% for each of these particles, predict the new state 

% for each of these new states compute the log likelihood 

% else generate a particle at random and compute its log likelihood. 

% find the maximum log likelihood and subtract it from all the other log 
likelihoods 

% construct the posterior at time t by exponentiating all the log likelihoods 
and normalizing so they sum to 1. 
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Correspondence Using SSD 

SSD error 

disparity 

Left Right 

scanline 
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Sum of Squared (Pixel) 

Differences 
Left Right 
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Correspondence Using SSD 

Left Disparity Map 

Images courtesy of Point Grey Research 
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Bayesian Interpretation 

pM(d | IL, IR) 

How do we proceed? 
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Bayesian inference 

Prior model   pP(d) 

Likelihood model  pM(IL, IR| d) 

Posterior model 

p(d | IL, IR) = k pM(IL, IR| d) pP(d) 

Maximum a Posteriori (MAP estimate): 

  maximize p(d | IL, IR) 
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Measurement model 

Likelihood of intensity correspondence 

Corresponds to Gaussian noise for quadratic  
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Pairwise Markov Random Fields 

Clique “potential” 

Image 
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Markov Random Field 

Probability distribution on disparity field d(x,y) 

Enforces smoothness or coherence on field 
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Stereo results 

Ground truth Scene 

– Data from University of Tsukuba 

(Seitz) 
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Results with window correlation 

Window-based matching 

(best window size) 

Ground truth 

(Seitz) 
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Results with better method 

Reasonably good method 
Boykov et al., Fast Approximate Energy Minimization via Graph Cuts,  

International Conference on Computer Vision, September 1999. 

Ground truth 

(Seitz) 
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Results with better method 

Best method on Middlebury stereo site 
http://vision.middlebury.edu/stereo/eval/. 

Ground truth 

(Seitz) 



©Michael J. Black 

Choice? 

• Markov random field models of images 

– Detail and novel research 

• Object recognition 

– High level overview of the current field 
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