Introduction to Computer Vision

Michael J. Black Sept 2008

Lecture 5: Linear filtering

CS143 Intro to Computer Vision

Info

- Matlab tutorial yesterday
 - <u>http://www.cs.brown.edu/courses/cs143/MatlabTutorialCode.html</u>
 - Do we need another?
- Problems 1&2 in Asgn1 due Friday at class time.
- Are you on the cs143list?
- Check web regularly

Goals

- Linear filtering
 - Foundations for asng1.
 - Problem 1
- Monday: image derivatives – Problem 2
- Wednesday: correlation, features
 Problems 3&4

Homework

- Assignment 0 due
- Assignment 1 out
 - Grad credit do extra credit questions.
 - Problems 1&2 due Friday Sept 19 (1 week)
 - Problems 3&4 due the week after

Office/TA hours

Michael's office hours (CIT 521) Wednesday/Thursday 3:00-4:00

TA Hours (CIT 271):Deqing: Mondays from 7pm to 9pmTeodor: Tuesdays from 5pm - 7pm.

Upcoming talk

Gerard Medioni

University of Southern California Monday, September 15, 2008 at 3pm Room 368 (CIT 3rd floor) Refreshments will be served at 2:45 pm

Tensor Voting in 2 to N dimensions: Fundamental Elements and a Few Applications

Ponce and Forsyth

http://decsai.ugr.es/mia/complementario/t1/book3chaps.html

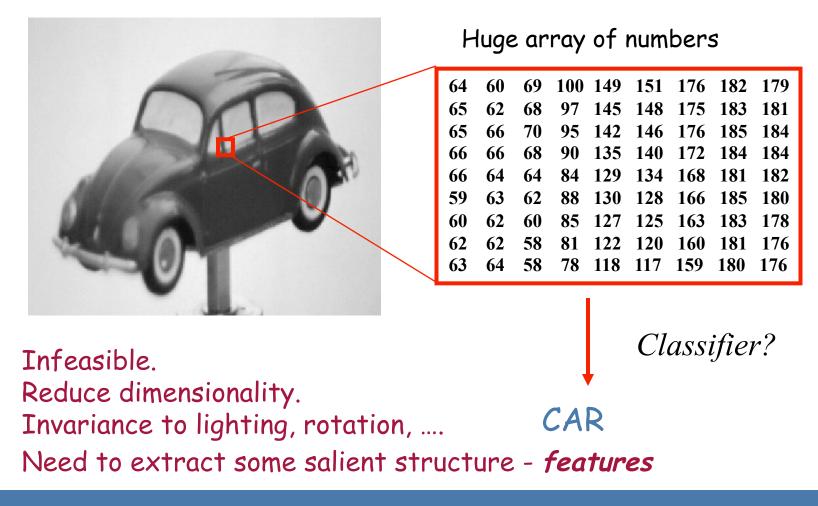
```
im = double(imread('/course/cs143/asgn/asgn0/flintstones.tif'));
% horzontally flipped
im1 = im(:, end:-1:1);
figure;
imshow(uint8(im1));
```

```
% log(im+1)
im2 = log(im+1);
```

```
% Scale so that the maximum is 255
im2 = 255*(im2-min(im2(:)))/max(im2(:)-min(im2(:)));
fprintf('the mean is %3.3f\n', mean(im2(:)));
imshow(uint8(im2));
```

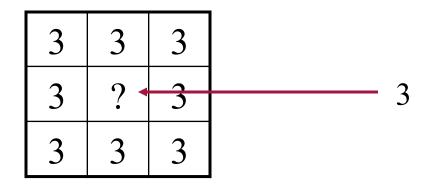
```
% Negative image im3 = 255 - im1;
```

From images to understanding?



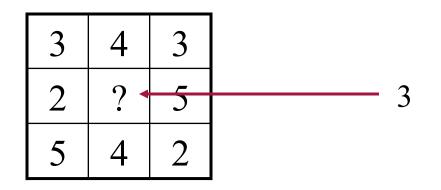
CS143 Intro to Computer Vision

Image Filtering



CS143 Intro to Computer Vision

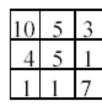
Image Filtering

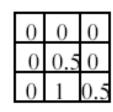


What assumptions are you making to infer the center value?

Linear functions

- Simplest: linear filtering.
 - Replace each pixel by a linear combination of its neighbors.
- The prescription for the linear combination is called the "convolution kernel".





7

Local image data

kernel

Modified image data 11

Linear Filtering

- Linear means that the response of the filter at a pixel is a linear combination of other pixels.
 - Typically using a local neighborhood.
 - Linear methods simplest.
- Useful to:
 - Integrate information over constant regions.
 - Modify images (e.g. smooth or enhance)
 - Scale.
 - Detect features.

2-D signals and convolutions

- Continuous I(x,y)
- Discrete I[k,l] or $I_{k,l}$
- 2-D convolution (discrete)

$$f[m,n] = I \otimes g = \sum_{k=1}^{K} \sum_{l=1}^{L} I[m-k+\lfloor K/2 \rfloor, n-l+\lfloor L/2 \rfloor]g[k,l]$$

"filtered" image

filter "kernel"

2-D signals and correlation

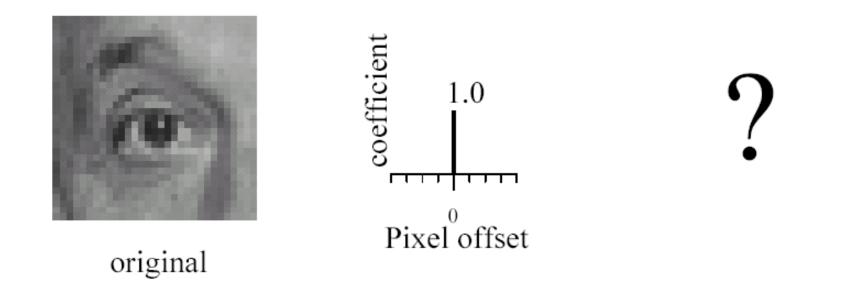
- Continuous I(x,y)
- Discrete I[k,l] or $I_{k,l}$
- 2-D correlation (discrete)

$$f[m,n] = I \otimes g = \sum_{k=1}^{K} \sum_{l=1}^{L} I[m+k-\lfloor K/2 \rfloor, n+l-\lfloor L/2 \rfloor]g[k,l]$$

"filtered" image

filter "kernel"

Linear filtering (warm-up slide)

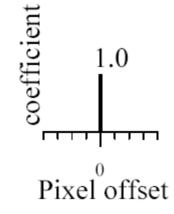


Freeman

CS143 Intro to Computer Vision

Linear filtering (warm-up slide)

original



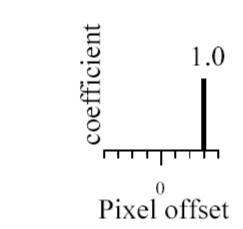
Filtered (no change)

Freeman

CS143 Intro to Computer Vision

Linear filtering

original

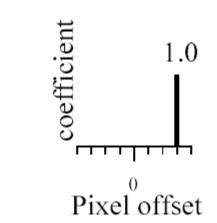


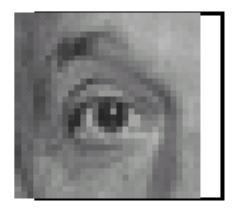
Freeman

CS143 Intro to Computer Vision

shift

original



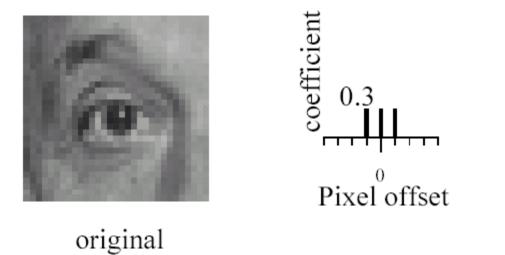


shifted

Freeman

CS143 Intro to Computer Vision

Linear filtering

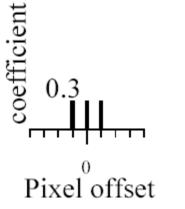


Freeman

CS143 Intro to Computer Vision

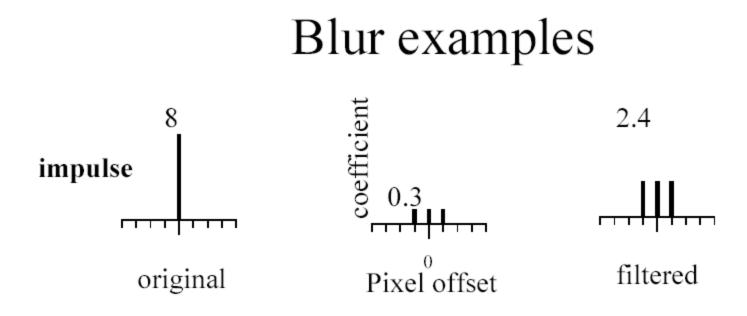
Blurring

original



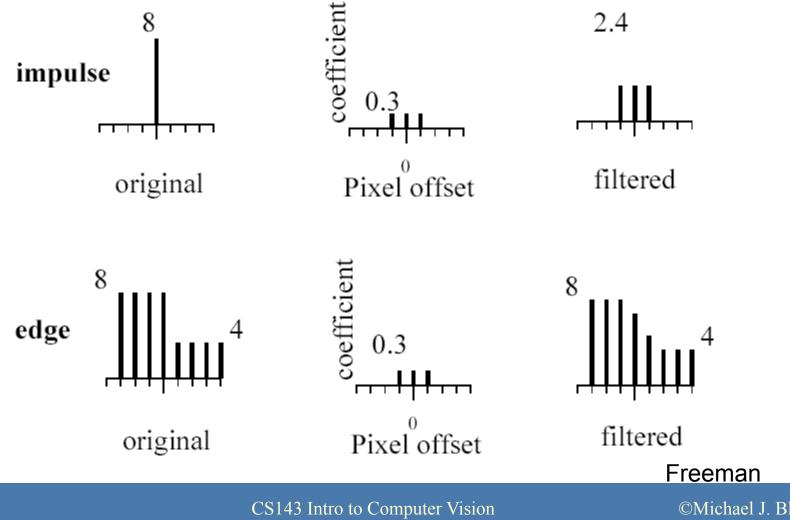
Blurred (filter applied in both dimensions).

Freeman

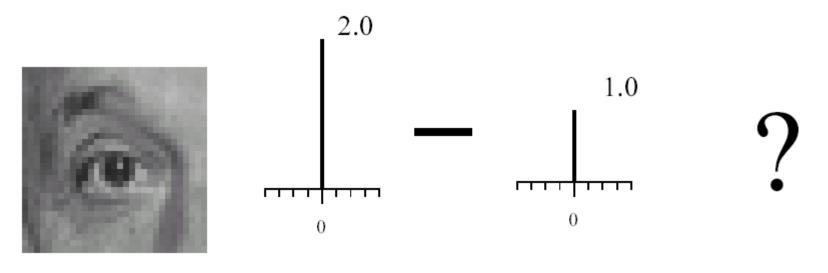


Freeman

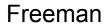
Blur examples



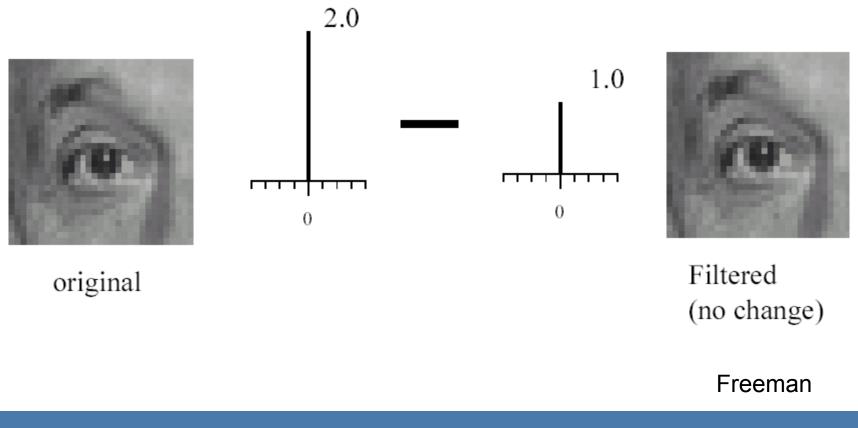
Linear filtering (warm-up slide)



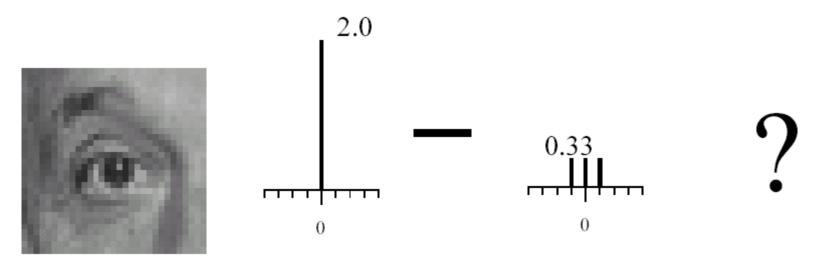
original



Linear filtering (no change)



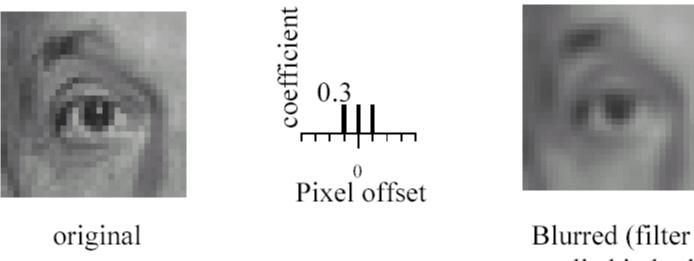
Linear filtering



original

CS143 Intro to Computer Vision

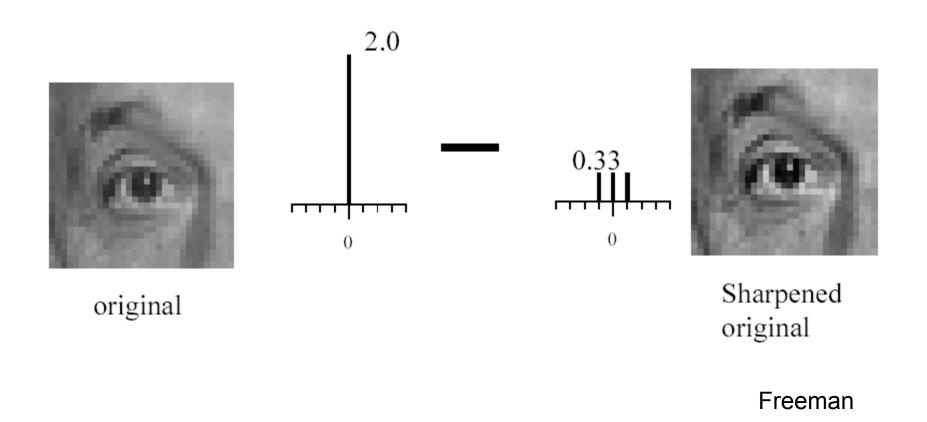
(remember blurring)



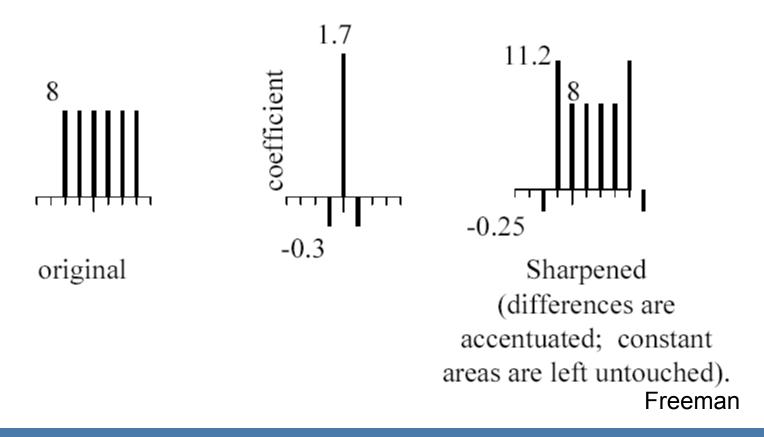
applied in both dimensions).

Freeman

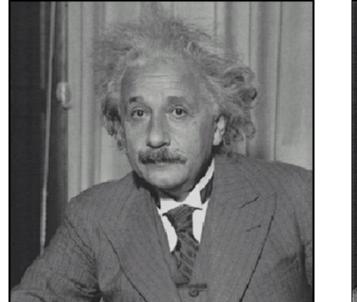
Sharpening



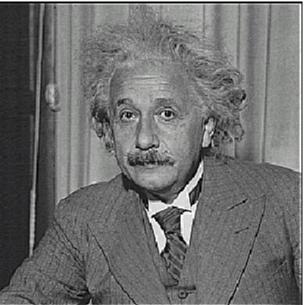
Sharpening example



Sharpening



before



after

Freeman

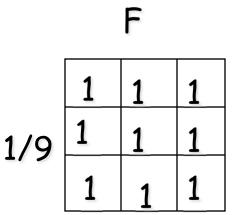
CS143 Intro to Computer Vision

Filtering to reduce noise

- "Noise" is what we're not interested in.
 - We'll discuss simple, low-level noise today: Light fluctuations; Sensor noise; Quantization effects; Finite precision
 - Not complex: shadows; extraneous objects.
- A pixel's neighborhood contains information about its intensity.
- Averaging noise reduces its effect.

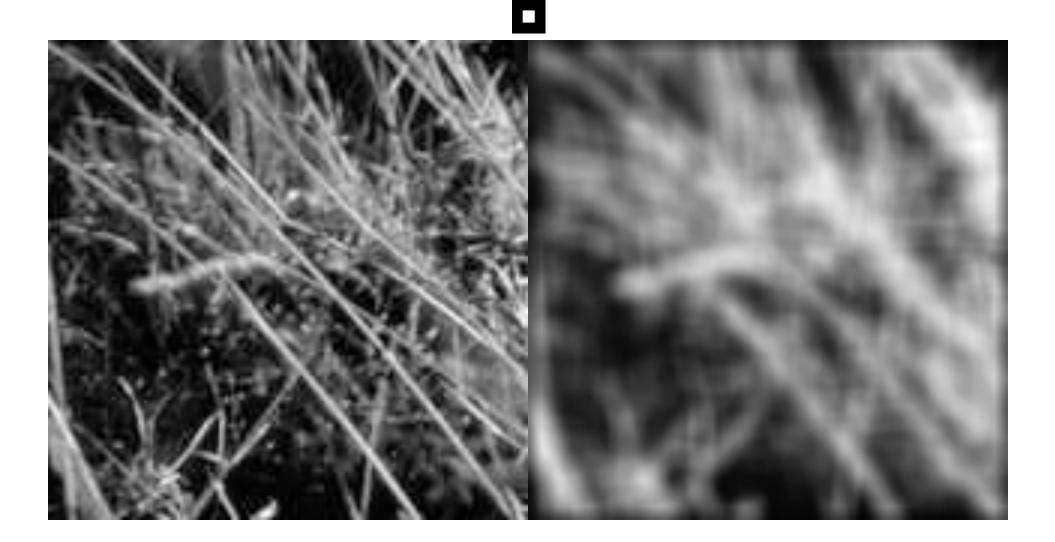
Average Filter

- Mask with positive entries, that sum 1.
- Replaces each pixel with an average of its neighborhood.
- If all weights are equal, it is called a BOX filter.



(Camps)

Example: Smoothing by Averaging

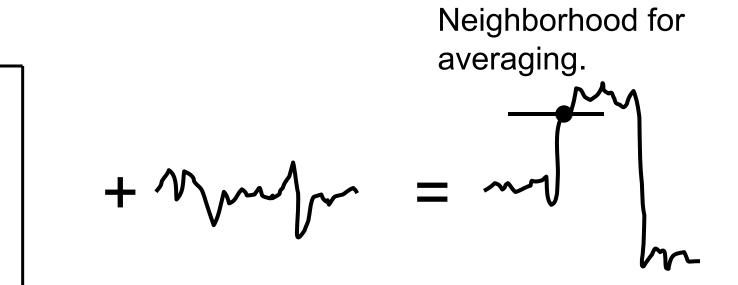


Linear systems

Basic properties. If T[.] is a linear operator, and a and b are scalars, then:

- homogeneity T[a X] = a T[X]
- additivity $T[X_1+X_2] = T[X_1]+T[X_2]$
- superposition $T[aX_1+bX_2] = aT[X_1]+bT[X_2]$
- Linear system ⇔ superposition
- Examples:
- matrix operations (additions, multiplication)
- convolutions

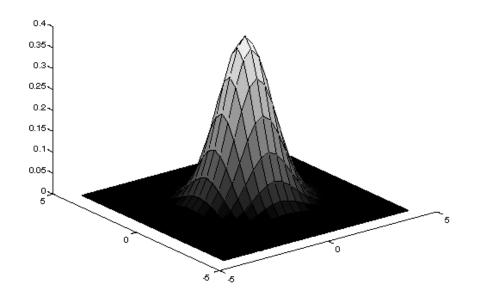
Smoothing as Inference About the Signal



Nearby points tell more about the signal than distant ones.

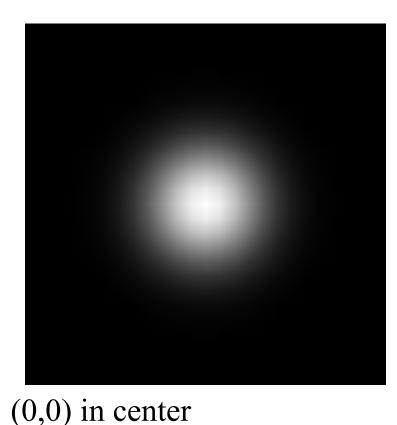
Gaussian Averaging

- Rotationally symmetric.
- Weights nearby pixels more than distant ones.
 - This makes sense as probabilistic inference.



• A Gaussian gives a good model of a fuzzy blob

An Isotropic Gaussian



• The picture shows a smoothing kernel proportional to

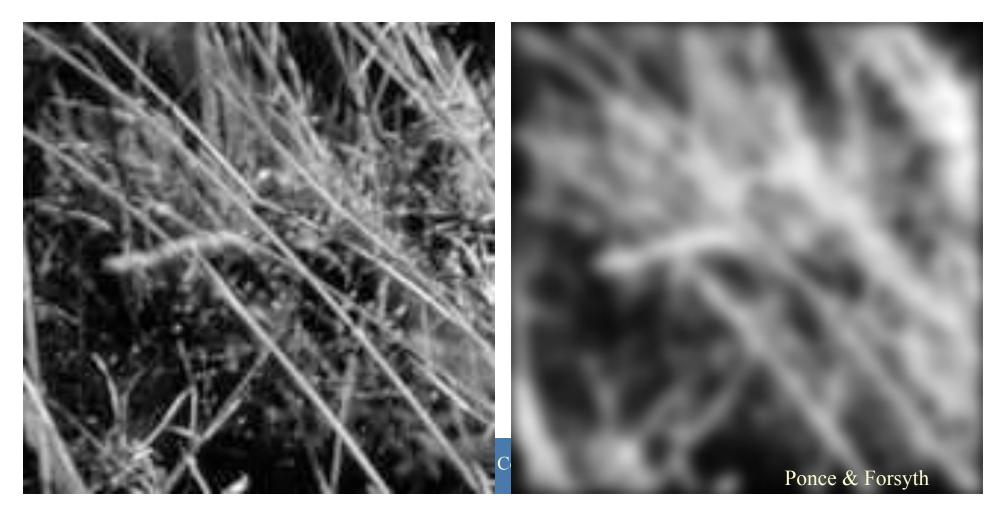
$$g(x, y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{(x^2 + y^2)}{2\sigma^2}\right)$$

(which is a reasonable model of a circularly symmetric fuzzy blob)

Ponce & Forsyth

CS143 Intro to Computer Vision

Smoothing with a Gaussian



Homework

g=fspecial('gaussian',3,1)

B = imfilter(A,g,'symmetric','conv')
B = imfilter(A,g,'symmetric','corr')
% in the case of a symmetric filter, these are the same

Separable Gaussian

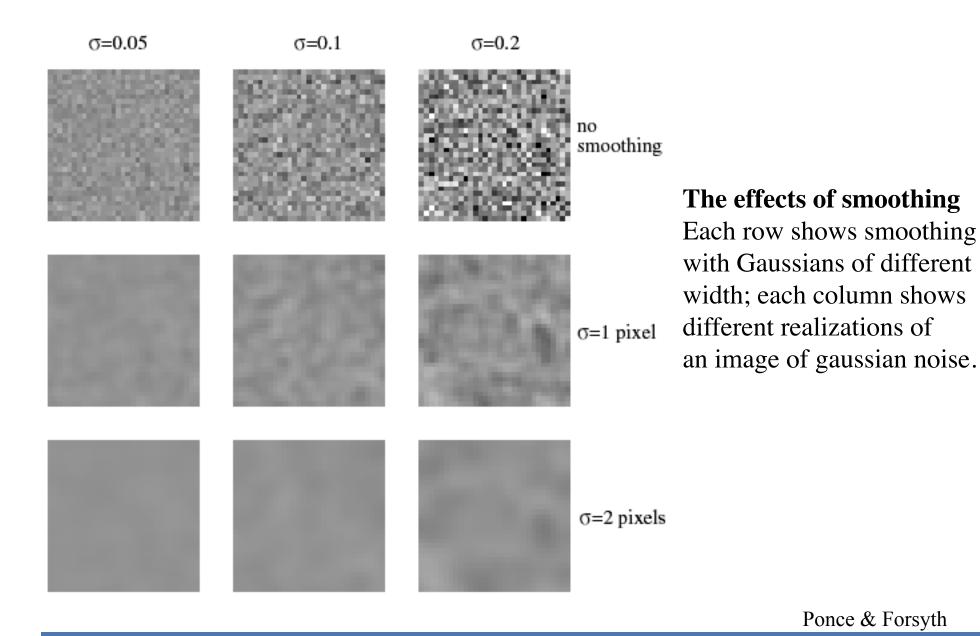
$$g(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp(-x^2/(2\sigma^2)) = G_x$$

$$g(y) = \frac{1}{\sqrt{2\pi\sigma}} \exp(-y^2/(2\sigma^2)) = G_y$$

Product?

$$g(x, y) = \frac{1}{2\pi\sigma^2} \exp(-(x^2 + y^2)/(2\sigma^2))$$

$$G_x \otimes (G_y \otimes I) = (G_x \otimes G_y) \otimes I = G_{xy} \otimes I$$



CS143 Intro to Computer Vision

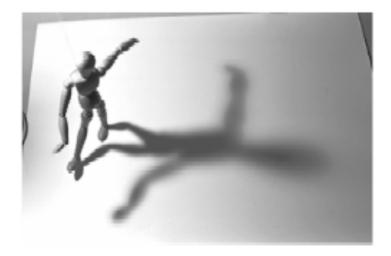
Multi-Resolution Image Representation

- Gaussian pyramids
- Laplacian Pyramids

Source: Irani

CS143 Intro to Computer Vision

Motivation for studying scale.

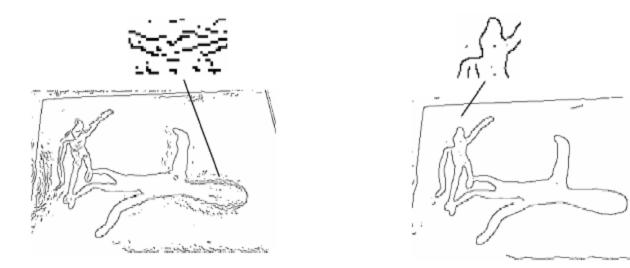


ELDER AND ZUCKER: LOCAL SCALE CONTROL FOR EDGE DETECTION AND BLUR ESTIMATION

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 7, JULY 1998

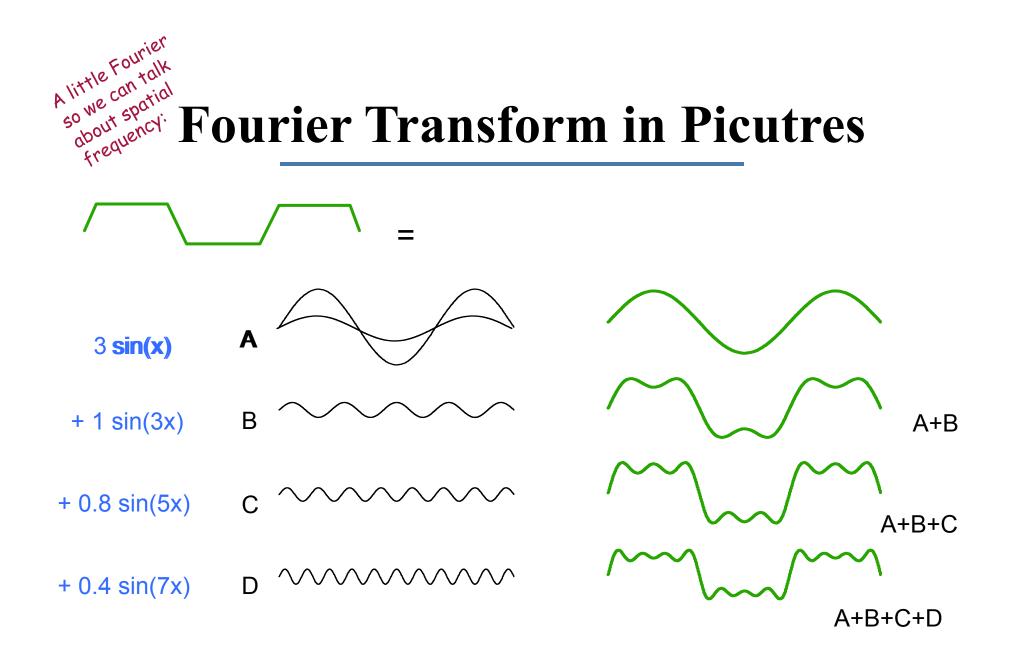
CS143 Intro to Computer Vision

Motivation for studying scale.



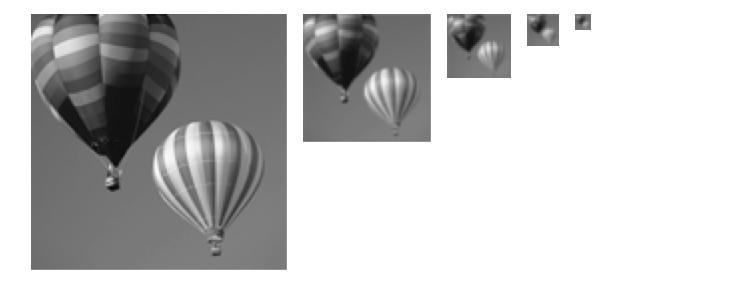
ELDER AND ZUCKER: LOCAL SCALE CONTROL FOR EDGE DETECTION AND BLUR ESTIMATION

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 7, JULY 1998



CS143 Intro to Computer Vision

Gaussian Pyramid



High resolution — Low resolution

Source: Irani

CS143 Intro to Computer Vision