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Info 

• Matlab tutorial yesterday 
– http://www.cs.brown.edu/courses/cs143/MatlabTutorialCode.html 

– Do we need another? 

• Problems 1&2 in Asgn1 due Friday at class time. 

• Are you on the cs143list? 

• Check web regularly 
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Goals 

• Linear filtering 

– Foundations for asng1. 

• Problem 1 

• Monday: image derivatives 

– Problem 2 

• Wednesday: correlation, features 

– Problems 3&4 
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Homework   

• Assignment 0 due 

• Assignment 1 out 

– Grad credit – do extra credit questions. 

– Problems 1&2 due Friday Sept 19 (1 week) 

– Problems 3&4 due the week after 
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Office/TA hours 

Michael’s office hours (CIT 521) 

 Wednesday/Thursday 3:00-4:00 

TA Hours (CIT 271): 

 Deqing: Mondays from 7pm to 9pm 

   Teodor: Tuesdays from 5pm - 7pm. 

CS143 Intro to Computer Vision 2008 
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Upcoming talk 

CS143 Intro to Computer Vision 2008 

Gerard Medioni 

University of Southern California 

Monday, September 15, 2008 at 3pm 

Room 368 (CIT 3rd floor) 

Refreshments will be served at 2:45 pm 

Tensor Voting in 2 to N dimensions: Fundamental 

Elements and a Few Applications 
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Ponce and Forsyth 

CS143 Intro to Computer Vision 2008 

http://decsai.ugr.es/mia/complementario/t1/book3chaps.html 
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im = double(imread('/course/cs143/asgn/asgn0/flintstones.tif'));

% horzontally flipped 

im1 = im(:, end:-1:1); 

figure; 

imshow(uint8(im1)); 

% log(im+1) 

im2 = log(im+1); 

% Scale so that the maximum is 255 

im2 = 255*(im2-min(im2(:)))/max(im2(:)-min(im2(:))); 

fprintf('the mean is %3.3f\n’, mean(im2(:))); 

imshow(uint8(im2)); 

% Negative image 

im3 = 255 - im1; 
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From images to understanding? 

64    60    69   100  149   151   176   182   179 

65    62    68    97   145   148   175   183   181 

65    66    70    95   142   146   176   185   184 

66    66    68    90   135   140   172   184   184 

66    64    64    84   129   134   168   181   182 

59    63    62    88   130   128   166   185   180 

60    62    60    85   127   125   163   183   178 

62    62    58    81   122   120   160   181   176 

63    64    58    78   118   117   159   180   176 

Huge array of numbers 

CAR 

Classifier? Infeasible.   
Reduce dimensionality.   
Invariance to lighting, rotation, …. 

Need to extract some salient structure - features 
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Image Filtering 

3 3 3 

3 ? 3 

3 3 3 

3 
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Image Filtering 

3 4 3 

2 ? 5 

5 4 2 

3 

What assumptions are you 

making to infer the center value? 
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Freeman 
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Linear Filtering 

• Linear means that the response of the filter at a

 pixel is a linear combination of other pixels.   

– Typically using a local neighborhood. 

– Linear methods simplest. 

• Useful to: 

– Integrate information over constant regions. 

– Modify images (e.g. smooth or enhance) 

– Scale. 

– Detect features. 
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2-D signals and convolutions 

• Continuous   I(x,y) 

• Discrete  I[k,l]  or Ik,l 

• 2-D convolution (discrete) 

“filtered” image filter “kernel” 
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2-D signals and correlation 

• Continuous   I(x,y) 

• Discrete  I[k,l]  or Ik,l 

• 2-D correlation (discrete) 

“filtered” image filter “kernel” 
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Freeman 
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Freeman 
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Filtering to reduce noise 

• “Noise” is what we’re not interested in. 

– We’ll discuss simple, low-level noise today:

 Light fluctuations; Sensor noise; Quantization

 effects; Finite precision 

– Not complex: shadows; extraneous objects. 

• A pixel’s neighborhood contains

 information about its intensity. 

• Averaging noise reduces its effect.  
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Average  Filter 

• Mask with positive 

entries, that sum 1. 

• Replaces each pixel 

with an average of its 

neighborhood. 

• If all weights are 

equal, it is called a 

BOX filter. 

(Camps) 
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Example: Smoothing by 

Averaging 
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Linear systems 

Basic properties.  If T[.] is a linear operator,  and a and
 b are scalars, then: 

• homogeneity  T[a X]  = a T[X] 

• additivity  T[X1+X2]  = T[X1]+T[X2] 

• superposition  T[aX1+bX2] = aT[X1]+bT[X2] 

• Linear system  superposition 

• Examples: 

• matrix operations (additions, multiplication) 

• convolutions 
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Smoothing as Inference About the 

Signal 

+ = 

Nearby points tell more about the 

signal than distant ones. 

Neighborhood for 

averaging. 
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Gaussian Averaging 

• Rotationally

 symmetric. 

• Weights nearby

 pixels more than

 distant ones. 

– This makes sense as

 probabilistic

 inference. 
• A Gaussian gives a good 

model of a fuzzy blob 
Ponce & Forsyth 
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• The picture shows a 

smoothing kernel 

proportional to             

(which is a reasonable 

model of a circularly 

symmetric fuzzy blob) 

An Isotropic Gaussian 

Ponce & Forsyth (0,0) in center 
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Smoothing with a Gaussian 

Ponce & Forsyth 
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Homework 

g=fspecial('gaussian',3,1) 

g = 

    0.0751    0.1238    0.0751 

    0.1238    0.2042    0.1238 

    0.0751    0.1238    0.0751 

B = imfilter(A,g,’symmetric’,’conv’) 

B = imfilter(A,g,’symmetric’,’corr’)  

% in the case of a symmetric filter, these are the same 
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Separable Gaussian 

Product? 
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The effects of smoothing 
Each row shows smoothing
with Gaussians of different
width; each column shows
different realizations of 
an image of gaussian noise.

Ponce & Forsyth 
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• Gaussian pyramids 

• Laplacian Pyramids 

Multi-Resolution Image Representation 
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Motivation for 

studying scale. 
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Motivation for 

studying scale. 
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=  

3 sin(x)  A 

+ 1 sin(3x)  B A+B 

+ 0.8 sin(5x)  C 
A+B+C 

+ 0.4 sin(7x)  D 

A+B+C+D 

Fourier Transform in Picutres 

   sin(x)  A 
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Gaussian Pyramid 

High resolution Low resolution 


