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Goals 

• Linear filtering (cont.) 

– Foundations for asng1. 

• Problem 1, image pyramids 

• Problem 2, image derivatives 

• Friday: correlation, features 

– Problems 3&4 
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Homework   

• Assignment 1 

– Problems 1&2 due Monday Sept 28 

– Problems 3&4 due Oct 5. 

– Grad credit – do extra credit questions 
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Example: Smoothing by 

Averaging 
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Linear systems 

Basic properties.  If T[.] is a linear operator,  and a and 
b are scalars, then: 

– homogeneity  T[a X] = a T[X] 

– Additivity  T[X1+X2]  = T[X1]+T[X2] 

– superposition  T[aX1+bX2] = aT[X1]+bT[X2] 

– Linear system  superposition 

• Examples: 
– matrix operations (additions, multiplication) 

– convolutions 
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Smoothing as Inference About the 

Signal 

+ = 

Nearby points tell more about the 

signal than distant ones. 

Neighborhood for 

averaging. 
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Gaussian Averaging 

• Rotationally 

symmetric. 

• Weights nearby 

pixels more than 

distant ones. 

– This makes sense as 

probabilistic 

inference. 
• A Gaussian gives a good 

model of a fuzzy blob 
Ponce & Forsyth 
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• The picture shows a 

smoothing kernel 

proportional to             

(which is a reasonable 

model of a circularly 

symmetric fuzzy blob) 

An Isotropic Gaussian 

Ponce & Forsyth (0,0) is the center 
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Smoothing with a Gaussian 

Ponce & Forsyth 
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Homework 

g=fspecial('gaussian',3,1) 

g = 

    0.0751    0.1238    0.0751 

    0.1238    0.2042    0.1238 

    0.0751    0.1238    0.0751 

B = imfilter(A,g,’symmetric’,’conv’) 

B = imfilter(A,g,’symmetric’,’corr’)  

% in the case of a symmetric filter, these are the same 
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Separable Gaussian 

Product? 
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The effects of smoothing 
Each row shows smoothing
with Gaussians of different
width; each column shows
different realizations of 
an image of gaussian noise.

Ponce & Forsyth 
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• Gaussian pyramids 

• Laplacian Pyramids 

Multi-Resolution Image Representation 
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Motivation for 

studying scale. 
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Motivation for 

studying scale. 
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=  

3 sin(x)  A 

+ 1 sin(3x)  B A+B 

+ 0.8 sin(5x)  C 
A+B+C 

+ 0.4 sin(7x)  D 

A+B+C+D 

Fourier Transform in Picutres 

   sin(x)  A 
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Hwk 1 Prob 1, hint 
• Use structures and cell arrays 

• Write a nice display function 

• Don’t represent pyramid as an image and then filter 

this image – it will produce artifacts at the boundaries 

between the levels. 
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Gaussian Pyramid 

High resolution Low resolution 
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• The picture shows a 

smoothing kernel 

proportional to             

An Isotropic Gaussian 

Ponce & Forsyth 

(0,0) in center 
To smooth image, convolve with this filter. 
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The Gaussian Pyramid 

High resolution 

Low resolution 

blur 

blur 

blur 

down-sample 

down-sample blur 

down-sample 
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A bar in the big 
images is a 
hair on the 
zebra’s nose; in 
smaller 
images, a 
stripe; in the 
smallest, the 
animal’s nose
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Foveal/peripheral vision 

CS143 Intro to Computer Vision 
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Mona Lisa Smile 
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Why is her smile so mysterious? 

Why is this picture so fascinating? 

What could spatial frequency have 

to do with it? 
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Mona Lisa Smile 
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Low frequency High frequency 

Margaret Livingstone 
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Mona Lisa Smile 
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Margaret Livingstone 

Low frequency High frequency Fixate on eyes 

Mouth seen in 

low resolution 

periphery 
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Mona Lisa Smile 
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Low frequency High frequency Fixate on mouth 

Mouth seen in 

high resolution 

fovea 
Margaret Livingstone 
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search 

search 

search 

search 

Motivation: Search 

Irani & Basri 
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Sub-sampling 

Why smooth before sub-sampling? 
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Subsampling 
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Aliasing 

• Can’t shrink an image by taking every 

second pixel 

• If we do, characteristic errors appear  

– Common phenomenon 

• Wagon wheels rolling the wrong way in movies 

• Checkerboards misrepresented in ray tracing 
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Resample the 
checkerboard by taking 
one sample at each circle.  
In the case of the top left 
board, new representation 
is reasonable. 
Top right also yields a 
reasonable representation. 
Bottom left is all black 
(dubious) and bottom 
right has checks that are 
too big.
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Constructing a pyramid by 
taking every second pixel 
leads to layers that badly 
misrepresent the top layer


