Introduction to Computer Vision

Michael J. Black

Project Ideas

Brown University

CS143 Intro to Computer Vision

Dates

11/13 Proposals due

- 1 page write-up
- summary and goals (problem/approach)
- what are the key references
- where will you get data and how will you evaluate your method?

12/14 Projects due

Eigen faces

CS143 Intro to Computer Vision

Detect faces

Mahalanobis distance

CS143 Intro to Computer Vision

CS143 Intro to Computer Vision

Masked by skin detections

CS143 Intro to Computer Vision

Times the image

CS143 Intro to Computer Vision

If you work on face detection

- You must use color in some way (e.g. color eigenspace)
- You must search across a range of scales.
- You must try it on some image data that was not collected in class.
- Use the Moghaddam and Pentland paper.
- Extra: try gender recognition.

a) original photo

b) silhouette

c) reconstruction

- Kutulakos, K. and Seitz, S. 2000. Theory of Shape by Space Carving. *International Journal of Computer Vision*,
- 38(3):199-218.
- Images from ETH-80 database.

Sources of data

http://www.vision.ethz.ch/projects/categorization/eth80-db.html

Image segmentation

http://www-2.cs.cmu.edu/~jshi/Grouping/

Face gender classification?

http://vis-www.cs.umass.edu/lfw/

13233 labeled faces of 5749 people found with Viola-Jones detector (Adaboost).

Use names to get gender: (http://www.gpeters.com/names/ baby-names.php?)

Brown University

More face images

There are many other face databases on the web. Eg:

http://titan.cog.brown.edu:8080/TarrLab/face-place

Kalman Filter Tracker

• Real-time tracker using a PC camera.

CS143 Intro to Computer Vision

Mean-shift tracking

http://www.caip.rutgers.edu/~comanici/Papers/KernelTracking.pdf

Brown University

CS143 Intro to Computer Vision

Facial expressions

- Affine head tracking
- analysis of motions of facial features

Brown University

CS143 Intro to Computer Vision

EigenTracking (Black and Jepson)

Combines affine motion estimation with PCA representation to allow tracking of deforming objects.

Data:

http://www.cs.brown.edu/ ~black/images.html

http://www.cs.brown.edu/~black/eigenTrack.html

Brown University

EigenTracking: Robust Affine Matching Using a View-Based Representation

Submitted to ECCV'96

Confidential: For Review Only

Brown University

CS143 Intro to Computer Vision

http://www.robots.ox.ac.uk/~cbibby/research_pwp.shtml

Brown University

CS143 Intro to Computer Vision

Tadpole tracker

• Contact black or moldovan for data.

Brown University

(a) Example image with predicted position plotted

(c) Pixel intensity distribution

(d) Combined distribution

(e) Example image with 200 particles

Brown University

©Michael J. Black

Rodent tracker

Contact: Prof. Russ Church (Russell_Church@brown.edu)

Brown University

CS143 Intro to Computer Vision

Active Shape/Appearance Models

http://www.isbe.man.ac.uk/~bim/ Lot's of support code and data on web.

Brown University

CS143 Intro to Computer Vision

Stereo

http://vision.middlebury.edu/stereo/

Brown University

CS143 Intro to Computer Vision

Panoramic Mosaics

http://www.cs.washington.edu/education/courses/455/03wi/projects/project2/project2.htm

Brown University

CS143 Intro to Computer Vision

Dense Optical Flow or Stereo

Data and ground truth flow:

http://vision.middlebury.edu/flow/

Same for stereo

http://vision.middlebury.edu/stereo/

Brown University

Pedestrian Detectors

http://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are centred on the image background just *outside* the contour. (a) The average gradient image over the training examples. (b) Each "pixel" shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image. (e) It's computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

Non-linear diffusion

Image denoising.

Original Image

Edge Enhancing Diffusion

Brown University

CS143 Intro to Computer Vision

http://www-mount.ee.umn.edu/~guille/inpainting.htm

-this turns out to be too hard and the best thing to do is a non-linear diffusion method.

Image Inpainting

Brown University

CS143 Intro to Computer Vision

Colorization

http://www.cs.huji.ac.il/~yweiss/Colorization/

Brown University

CS143 Intro to Computer Vision

Super-resolution

See Michal Irani and Shmuel Peleg.Super Resolution From Image Sequences.IEEE, 1990.

CS296-4 Brown University ©Michael J. Black

Forensic Computer Vision April 2006

CS296-4 ©Michael J. Black Brown University Forensic Computer Vision

Super-resolution

©Michael J. Black

CS296-4 Brown University

More Project "Ideas"

Temporal model of mouth motions (HMM) for recognition. More advanced machine learning method for mouth or person detection

- AdaBoost
- support vector machines
- Bayesian image denoising

Stereo

Space carving from silhouettes

Grab-cut

Moghaddam mixture model for face/mouth recognition.