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The machine learning 

framework 

• Apply a prediction function to a feature representation of 

the image to get the desired output: 

 

   f(    ) = “apple” 

   f(    ) = “tomato” 

   f(    ) = “cow” 
 Slide credit: L. Lazebnik 



The machine learning 

framework 

y = f(x) 
 

 

 

 

• Training: given a training set of labeled examples {(x1,y1), 

…, (xN,yN)}, estimate the prediction function f by minimizing 

the prediction error on the training set 

• Testing: apply f to a never before seen test example x and 

output the predicted value y = f(x) 

output prediction 

function 

Image 

feature 

Slide credit: L. Lazebnik 
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Slide credit: D. Hoiem and L. Lazebnik 



Features 

• Raw pixels 

 

 

• Histograms 

 

 

• GIST descriptors 

 

 

• … 
Slide credit: L. Lazebnik 



Classifiers: Nearest neighbor 

f(x) = label of the training example nearest to x 

 

• All we need is a distance function for our inputs 

• No training required! 

Test 

example 
Training 

examples 

from class 1 

Training 

examples 

from class 2 

Slide credit: L. Lazebnik 



Classifiers: Linear 

• Find a linear function to separate the classes: 
 

 f(x) = sgn(w  x + b) 

Slide credit: L. Lazebnik 



Many classifiers to choose from 

• SVM 

• Neural networks 

• Naïve Bayes 

• Bayesian network 

• Logistic regression 

• Randomized Forests 

• Boosted Decision Trees 

• K-nearest neighbor 

• RBMs 

• Etc. 

 

 

Which is the best one? 

Slide credit: D. Hoiem 



• Images in the training set must be annotated with the 

“correct answer” that the model is expected to produce 

Contains a motorbike 

Recognition task and supervision 

Slide credit: L. Lazebnik 



Unsupervised “Weakly” supervised Fully supervised 

Definition depends on task 

Slide credit: L. Lazebnik 



Generalization 

• How well does a learned model generalize from 

the data it was trained on to a new test set? 

Training set (labels known) Test set (labels 

unknown) 

Slide credit: L. Lazebnik 



Generalization 
• Components of generalization error  

– Bias: how much the average model over all training sets differ 

from the true model? 

• Error due to inaccurate assumptions/simplifications made by 

the model 

– Variance: how much models estimated from different training 

sets differ from each other 

• Underfitting: model is too “simple” to represent all the 

relevant class characteristics 

– High bias and low variance 

– High training error and high test error 

• Overfitting: model is too “complex” and fits irrelevant 

characteristics (noise) in the data 

– Low bias and high variance 

– Low training error and high test error 

Slide credit: L. Lazebnik 



Bias-Variance Trade-off 

• Models with too few 
parameters are 
inaccurate because of a 
large bias (not enough 
flexibility). 
 

• Models with too many 
parameters are 
inaccurate because of a 
large variance (too much 
sensitivity to the sample). 

Slide credit: D. Hoiem 



Bias-Variance Trade-off 

E(MSE) = noise2  + bias2 + variance 

See the following for explanations of bias-variance (also Bishop’s “Neural 

Networks” book):  

• http://www.stat.cmu.edu/~larry/=stat707/notes3.pdf 

• http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf 

Unavoidable 

error 

Error due to 

incorrect 

assumptions 

Error due to 

variance of training 

samples 

Slide credit: D. Hoiem 

http://www.stat.cmu.edu/~larry/=stat707/notes3.pdf
http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf
http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf


Bias-variance tradeoff 
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Test error 
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Slide credit: D. Hoiem 



Bias-variance tradeoff 

Many training examples 

Few training examples 
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Slide credit: D. Hoiem 



Effect of Training Size 

Testing 
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Fixed prediction model 

Slide credit: D. Hoiem 



Remember… 

• No classifier is inherently 
better than any other: you 
need to make assumptions to 
generalize 

 

• Three kinds of error 
– Inherent: unavoidable 

– Bias: due to over-simplifications 

– Variance: due to inability to 
perfectly estimate parameters 
from limited data 

Slide credit: D. Hoiem Slide credit: D. Hoiem 



How to reduce variance? 

 

• Choose a simpler classifier 

 

• Regularize the parameters 

 

• Get more training data 

Slide credit: D. Hoiem 



Very brief tour of some classifiers 

• SVM 

• Neural networks 

• Naïve Bayes 

• Bayesian network 

• Logistic regression 

• Randomized Forests 

• Boosted Decision Trees 

• K-nearest neighbor 

• RBMs 

• Etc. 

 

 



Generative vs. Discriminative Classifiers 

Generative Models 

• Represent both the data and 
the labels 

• Often, makes use of 
conditional independence 
and priors 

• Examples 
– Naïve Bayes classifier 

– Bayesian network 

 

• Models of data may apply to 
future prediction problems 

 

Discriminative Models 

• Learn to directly predict the 
labels from the data 

• Often, assume a simple 
boundary (e.g., linear) 

• Examples 
– Logistic regression 

– SVM 

– Boosted decision trees 

 

• Often easier to predict a 
label from the data than to 
model the data 
 

Slide credit: D. Hoiem 



Classification 

• Assign input vector to one of two or more 

classes 

• Any decision rule divides input space into 

decision regions separated by decision 

boundaries 

 

 

Slide credit: L. Lazebnik 



Nearest Neighbor Classifier 

• Assign label of nearest training data point to each test data 

point  

Voronoi partitioning of feature space  
for two-category 2D and 3D data 

from Duda et al. 

Source: D. Lowe 
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1-nearest neighbor 
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3-nearest neighbor 
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5-nearest neighbor 
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Using K-NN 

 

• Simple, a good one to try first 

 

• With infinite examples, 1-NN provably has 
error that is at most twice Bayes optimal error 



Naïve Bayes 

x1 x2 x3 

y 

 



Using Naïve Bayes  

 

• Simple thing to try for categorical data 

 

• Very fast to train/test 

 

 



Classifiers: Linear SVM 
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Classifiers: Linear SVM 
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• Datasets that are linearly separable work out great: 
 

 

 

 

 

 

 

• But what if the dataset is just too hard?  

 

 

• We can map it to a higher-dimensional space: 

0 x 

0 x 

0 x 

x2 

Nonlinear SVMs 

Slide credit: Andrew Moore 



Φ:  x → φ(x) 

Nonlinear SVMs 

• General idea: the original input space can 

always be mapped to some higher-dimensional 

feature space where the training set is 

separable: 

 

Slide credit: Andrew Moore 



Nonlinear SVMs 

• The kernel trick: instead of explicitly computing 

the lifting transformation φ(x), define a kernel 

function K such that 
 

         K(xi , xj) = φ(xi ) · φ(xj) 
 

 (to be valid, the kernel function must satisfy 

Mercer’s condition) 

• This gives a nonlinear decision boundary in the 

original feature space: 
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C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 

and Knowledge Discovery, 1998  

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Nonlinear kernel: Example 
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Kernels for bags of features 

• Histogram intersection kernel: 

 

 

 

• Generalized Gaussian kernel: 

 

 

 

• D can be L1 distance, Euclidean distance,  

χ2 distance, etc. 
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J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, Local Features and Kernels for 

Classifcation of Texture and Object Categories: A Comprehensive Study, IJCV 2007 

http://lear.inrialpes.fr/pubs/2007/ZMLS07/ZhangMarszalekLazebnikSchmid-IJCV07-ClassificationStudy.pdf
http://lear.inrialpes.fr/pubs/2007/ZMLS07/ZhangMarszalekLazebnikSchmid-IJCV07-ClassificationStudy.pdf


Summary: SVMs for image classification 

1. Pick an image representation (in our case, bag 

of features) 

2. Pick a kernel function for that representation 

3. Compute the matrix of kernel values between 

every pair of training examples 

4. Feed the kernel matrix into your favorite SVM 

solver to obtain support vectors and weights 

5. At test time: compute kernel values for your test 

example and each support vector, and combine 

them with the learned weights to get the value of 

the decision function 

Slide credit: L. Lazebnik 



What about multi-class SVMs? 

• Unfortunately, there is no “definitive” multi-

class SVM formulation 

• In practice, we have to obtain a multi-class 

SVM by combining multiple two-class SVMs  

• One vs. others 
• Traning: learn an SVM for each class vs. the others 

• Testing: apply each SVM to test example and assign to it the 

class of the SVM that returns the highest decision value 

• One vs. one 
• Training: learn an SVM for each pair of classes 

• Testing: each learned SVM “votes” for a class to assign to 

the test example 

 

Slide credit: L. Lazebnik 



SVMs: Pros and cons 

• Pros 
• Many publicly available SVM packages: 

http://www.kernel-machines.org/software 

• Kernel-based framework is very powerful, flexible 

• SVMs work very well in practice, even with very small 

training sample sizes 

 

• Cons 
• No “direct” multi-class SVM, must combine two-class SVMs 

• Computation, memory  

– During training time, must compute matrix of kernel values for 

every pair of examples 

– Learning can take a very long time for large-scale problems 

http://www.kernel-machines.org/software
http://www.kernel-machines.org/software
http://www.kernel-machines.org/software


Classifiers: Decision Trees 
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Ensemble Methods: Boosting 

figure from Friedman et al. 2000 



Boosted Decision Trees  

… 
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[Collins et al. 2002] 

P(label | good segment, data) 



Using Boosted Decision Trees 

• Flexible: can deal with both continuous and 
categorical variables 

• How to control bias/variance trade-off 

– Size of trees 

– Number of trees 

• Boosting trees often works best with a small 
number of well-designed features 

• Boosting “stubs” can give a fast classifier 

 



Two ways to think about classifiers 

 

1. What is the objective? What are the 
parameters?  How are the parameters 
learned? How is the learning regularized?  
How is inference performed? 

 

2. How is the data modeled?  How is similarity 
defined?  What is the shape of the 
boundary? 

Slide credit: D. Hoiem 
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Slide credit: D. Hoiem 



What to remember about classifiers 

 

• No free lunch: machine learning algorithms are tools, 
not dogmas 

 

• Try simple classifiers first 

 

• Better to have smart features and simple classifiers 
than simple features and smart classifiers 

 

• Use increasingly powerful classifiers with more 
training data (bias-variance tradeoff) 

 

 
Slide credit: D. Hoiem 



Some Machine Learning References 

 

• General 

– Tom Mitchell, Machine Learning, McGraw Hill, 1997 

– Christopher Bishop, Neural Networks for Pattern 
Recognition, Oxford University Press, 1995 

• Adaboost 

– Friedman, Hastie, and Tibshirani, “Additive logistic 
regression: a statistical view of boosting”, Annals of 
Statistics, 2000  

• SVMs 

– http://www.support-vector.net/icml-tutorial.pdf 

Slide credit: D. Hoiem 


