
Photo by Carl Warner

Photo by Carl Warner

Photo by Carl Warner

Machine Learning: Classification

Computer Vision

CS 143, Brown

James Hays

09/26/11

Slides from Lazebnik,

Hoiem, and others

The machine learning

framework

• Apply a prediction function to a feature representation of

the image to get the desired output:

 f() = “apple”

 f() = “tomato”

 f() = “cow”
 Slide credit: L. Lazebnik

The machine learning

framework

y = f(x)

• Training: given a training set of labeled examples {(x1,y1),

…, (xN,yN)}, estimate the prediction function f by minimizing

the prediction error on the training set

• Testing: apply f to a never before seen test example x and

output the predicted value y = f(x)

output prediction

function

Image

feature

Slide credit: L. Lazebnik

Prediction

Steps

Training

Labels
Training

Images

Training

Training

Image

Features

Image

Features

Testing

Test Image

Learned

model

Learned

model

Slide credit: D. Hoiem and L. Lazebnik

Features

• Raw pixels

• Histograms

• GIST descriptors

• …
Slide credit: L. Lazebnik

Classifiers: Nearest neighbor

f(x) = label of the training example nearest to x

• All we need is a distance function for our inputs

• No training required!

Test

example
Training

examples

from class 1

Training

examples

from class 2

Slide credit: L. Lazebnik

Classifiers: Linear

• Find a linear function to separate the classes:

 f(x) = sgn(w x + b)

Slide credit: L. Lazebnik

Many classifiers to choose from

• SVM

• Neural networks

• Naïve Bayes

• Bayesian network

• Logistic regression

• Randomized Forests

• Boosted Decision Trees

• K-nearest neighbor

• RBMs

• Etc.

Which is the best one?

Slide credit: D. Hoiem

• Images in the training set must be annotated with the

“correct answer” that the model is expected to produce

Contains a motorbike

Recognition task and supervision

Slide credit: L. Lazebnik

Unsupervised “Weakly” supervised Fully supervised

Definition depends on task

Slide credit: L. Lazebnik

Generalization

• How well does a learned model generalize from

the data it was trained on to a new test set?

Training set (labels known) Test set (labels

unknown)

Slide credit: L. Lazebnik

Generalization
• Components of generalization error

– Bias: how much the average model over all training sets differ

from the true model?

• Error due to inaccurate assumptions/simplifications made by

the model

– Variance: how much models estimated from different training

sets differ from each other

• Underfitting: model is too “simple” to represent all the

relevant class characteristics

– High bias and low variance

– High training error and high test error

• Overfitting: model is too “complex” and fits irrelevant

characteristics (noise) in the data

– Low bias and high variance

– Low training error and high test error

Slide credit: L. Lazebnik

Bias-Variance Trade-off

• Models with too few
parameters are
inaccurate because of a
large bias (not enough
flexibility).

• Models with too many
parameters are
inaccurate because of a
large variance (too much
sensitivity to the sample).

Slide credit: D. Hoiem

Bias-Variance Trade-off

E(MSE) = noise2 + bias2 + variance

See the following for explanations of bias-variance (also Bishop’s “Neural

Networks” book):

• http://www.stat.cmu.edu/~larry/=stat707/notes3.pdf

• http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf

Unavoidable

error

Error due to

incorrect

assumptions

Error due to

variance of training

samples

Slide credit: D. Hoiem

http://www.stat.cmu.edu/~larry/=stat707/notes3.pdf
http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf
http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf

Bias-variance tradeoff

Training error

Test error

Underfitting Overfitting

Complexity Low Bias

High Variance

High Bias

Low Variance

E
rr

o
r

Slide credit: D. Hoiem

Bias-variance tradeoff

Many training examples

Few training examples

Complexity Low Bias

High Variance

High Bias

Low Variance

T
e
s
t
E

rr
o
r

Slide credit: D. Hoiem

Effect of Training Size

Testing

Training

Generalization Error

Number of Training Examples

E
rr

o
r

Fixed prediction model

Slide credit: D. Hoiem

Remember…

• No classifier is inherently
better than any other: you
need to make assumptions to
generalize

• Three kinds of error
– Inherent: unavoidable

– Bias: due to over-simplifications

– Variance: due to inability to
perfectly estimate parameters
from limited data

Slide credit: D. Hoiem Slide credit: D. Hoiem

How to reduce variance?

• Choose a simpler classifier

• Regularize the parameters

• Get more training data

Slide credit: D. Hoiem

Very brief tour of some classifiers

• SVM

• Neural networks

• Naïve Bayes

• Bayesian network

• Logistic regression

• Randomized Forests

• Boosted Decision Trees

• K-nearest neighbor

• RBMs

• Etc.

Generative vs. Discriminative Classifiers

Generative Models

• Represent both the data and
the labels

• Often, makes use of
conditional independence
and priors

• Examples
– Naïve Bayes classifier

– Bayesian network

• Models of data may apply to
future prediction problems

Discriminative Models

• Learn to directly predict the
labels from the data

• Often, assume a simple
boundary (e.g., linear)

• Examples
– Logistic regression

– SVM

– Boosted decision trees

• Often easier to predict a
label from the data than to
model the data

Slide credit: D. Hoiem

Classification

• Assign input vector to one of two or more

classes

• Any decision rule divides input space into

decision regions separated by decision

boundaries

Slide credit: L. Lazebnik

Nearest Neighbor Classifier

• Assign label of nearest training data point to each test data

point

Voronoi partitioning of feature space
for two-category 2D and 3D data

from Duda et al.

Source: D. Lowe

K-nearest neighbor

x x

x
x

x

x

x

x

o

o
o

o

o

o

o

x2

x1

+

+

1-nearest neighbor

x x

x
x

x

x

x

x

o

o
o

o

o

o

o

x2

x1

+

+

3-nearest neighbor

x x

x
x

x

x

x

x

o

o
o

o

o

o

o

x2

x1

+

+

5-nearest neighbor

x x

x
x

x

x

x

x

o

o
o

o

o

o

o

x2

x1

+

+

Using K-NN

• Simple, a good one to try first

• With infinite examples, 1-NN provably has
error that is at most twice Bayes optimal error

Naïve Bayes

x1 x2 x3

y

Using Naïve Bayes

• Simple thing to try for categorical data

• Very fast to train/test

Classifiers: Linear SVM

x x

x
x

x

x

x

x

o
o

o

o

o

x2

x1

Classifiers: Linear SVM

x x

x
x

x

x

x

x

o
o

o

o

o

x2

x1

Classifiers: Linear SVM

x x

x
x

x

x

x

x

o

o
o

o

o

o

x2

x1

• Datasets that are linearly separable work out great:

• But what if the dataset is just too hard?

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Nonlinear SVMs

Slide credit: Andrew Moore

Φ: x → φ(x)

Nonlinear SVMs

• General idea: the original input space can

always be mapped to some higher-dimensional

feature space where the training set is

separable:

Slide credit: Andrew Moore

Nonlinear SVMs

• The kernel trick: instead of explicitly computing

the lifting transformation φ(x), define a kernel

function K such that

 K(xi , xj) = φ(xi) · φ(xj)

 (to be valid, the kernel function must satisfy

Mercer’s condition)

• This gives a nonlinear decision boundary in the

original feature space:

bKyby
i

iii

i

iii),()()(xxxx

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining

and Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Nonlinear kernel: Example

• Consider the mapping),()(2xxx

22

2222

),(

),(),()()(

yxxyyxK

yxxyyyxxyx

x2

Kernels for bags of features

• Histogram intersection kernel:

• Generalized Gaussian kernel:

• D can be L1 distance, Euclidean distance,

χ2 distance, etc.

N

i

ihihhhI
1

2121))(),(min(),(

2

2121),(
1

exp),(hhD
A

hhK

J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, Local Features and Kernels for

Classifcation of Texture and Object Categories: A Comprehensive Study, IJCV 2007

http://lear.inrialpes.fr/pubs/2007/ZMLS07/ZhangMarszalekLazebnikSchmid-IJCV07-ClassificationStudy.pdf
http://lear.inrialpes.fr/pubs/2007/ZMLS07/ZhangMarszalekLazebnikSchmid-IJCV07-ClassificationStudy.pdf

Summary: SVMs for image classification

1. Pick an image representation (in our case, bag

of features)

2. Pick a kernel function for that representation

3. Compute the matrix of kernel values between

every pair of training examples

4. Feed the kernel matrix into your favorite SVM

solver to obtain support vectors and weights

5. At test time: compute kernel values for your test

example and each support vector, and combine

them with the learned weights to get the value of

the decision function

Slide credit: L. Lazebnik

What about multi-class SVMs?

• Unfortunately, there is no “definitive” multi-

class SVM formulation

• In practice, we have to obtain a multi-class

SVM by combining multiple two-class SVMs

• One vs. others
• Traning: learn an SVM for each class vs. the others

• Testing: apply each SVM to test example and assign to it the

class of the SVM that returns the highest decision value

• One vs. one
• Training: learn an SVM for each pair of classes

• Testing: each learned SVM “votes” for a class to assign to

the test example

Slide credit: L. Lazebnik

SVMs: Pros and cons

• Pros
• Many publicly available SVM packages:

http://www.kernel-machines.org/software

• Kernel-based framework is very powerful, flexible

• SVMs work very well in practice, even with very small

training sample sizes

• Cons
• No “direct” multi-class SVM, must combine two-class SVMs

• Computation, memory

– During training time, must compute matrix of kernel values for

every pair of examples

– Learning can take a very long time for large-scale problems

http://www.kernel-machines.org/software
http://www.kernel-machines.org/software
http://www.kernel-machines.org/software

Classifiers: Decision Trees

x x

x
x

x

x

x

x

o

o
o

o

o

o

o

x2

x1

Ensemble Methods: Boosting

figure from Friedman et al. 2000

Boosted Decision Trees

…

Gray?

High in

Image?

Many Long

Lines?

Yes

No

No No

No

Yes Yes

Yes

Very High

Vanishing

Point?

High in

Image?

Smooth? Green?

Blue?

Yes

No

No No

No

Yes Yes

Yes

Ground Vertical Sky

[Collins et al. 2002]

P(label | good segment, data)

Using Boosted Decision Trees

• Flexible: can deal with both continuous and
categorical variables

• How to control bias/variance trade-off

– Size of trees

– Number of trees

• Boosting trees often works best with a small
number of well-designed features

• Boosting “stubs” can give a fast classifier

Two ways to think about classifiers

1. What is the objective? What are the
parameters? How are the parameters
learned? How is the learning regularized?
How is inference performed?

2. How is the data modeled? How is similarity
defined? What is the shape of the
boundary?

Slide credit: D. Hoiem

Comparison

Naïve

Bayes

Logistic

Regression

Linear

SVM

Nearest

Neighbor

Kernelized

SVM

Learning Objective

i
i

j

jiij

yP

yxP

0;log

;|log
maximize

Training

Krky

rkyx

i

i

i

iij

kj

1

Inference

0|0

1|0
log

,
0|1

1|1
log where

 01

0

1

01

yxP

yxP

yxP

yxP

j

j

j

j

j

j

TT
xθxθ

xθθx

θθx

T

ii

i

i

yyP

yP

exp1/1,| where

,|logmaximize

Gradient ascent 0xθ
T

 0xθ
TLinear programming

iy i

T

i

i

i

 1 such that

2

1
 minimize

xθ

θ

Quadratic

programming
complicated to write

most similar features same label Record data

i

iii Ky 0,ˆ xx

xx ,ˆ argmin where

i
i

i

Ki

y

assuming x in {0 1}

Slide credit: D. Hoiem

What to remember about classifiers

• No free lunch: machine learning algorithms are tools,
not dogmas

• Try simple classifiers first

• Better to have smart features and simple classifiers
than simple features and smart classifiers

• Use increasingly powerful classifiers with more
training data (bias-variance tradeoff)

Slide credit: D. Hoiem

Some Machine Learning References

• General

– Tom Mitchell, Machine Learning, McGraw Hill, 1997

– Christopher Bishop, Neural Networks for Pattern
Recognition, Oxford University Press, 1995

• Adaboost

– Friedman, Hastie, and Tibshirani, “Additive logistic
regression: a statistical view of boosting”, Annals of
Statistics, 2000

• SVMs

– http://www.support-vector.net/icml-tutorial.pdf

Slide credit: D. Hoiem

