09/28/11

## Finding Boundaries

Computer Vision CS 143, Brown

James Hays

Many slides from Lana Lazebnik, Steve Seitz, David Forsyth, David Lowe, Fei-Fei Li, and Derek Hoiem

# Edge detection

- Goal: Identify sudden changes (discontinuities) in an image
  - Intuitively, most semantic and shape information from the image can be encoded in the edges
  - More compact than pixels
- Ideal: artist's line drawing (but artist is also using object-level knowledge)



# Why do we care about edges?

• Extract information, recognize objects



 Recover geometry and viewpoint



# Origin of Edges



• Edges are caused by a variety of factors















# Characterizing edges

• An edge is a place of rapid change in the image intensity function



# Intensity profile





## With a little Gaussian noise





# Effects of noise

- Consider a single row or column of the image
  - Plotting intensity as a function of position gives a signal



#### Where is the edge?

# Effects of noise

- Difference filters respond strongly to noise
  - Image noise results in pixels that look very different from their neighbors
  - Generally, the larger the noise the stronger the response
- What can we do about it?

#### Solution: smooth first



• To find edges, look for peaks in  $\frac{d}{dx}(f * g)$ 

Source: S. Seitz

## Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative:  $\frac{d}{dx}(f * g) = f * \frac{d}{dx}g$
- This saves us one operation:



Source: S. Seitz

## Derivative of Gaussian filter



#### Tradeoff between smoothing and localization



1 pixel

3 pixels

7 pixels

 Smoothed derivative removes noise, but blurs edge. Also finds edges at different "scales".

Source: D. Forsyth

# Designing an edge detector

- Criteria for a good edge detector:
  - Good detection: the optimal detector should find all real edges, ignoring noise or other artifacts
  - Good localization
    - the edges detected must be as close as possible to the true edges
    - the detector must return one point only for each true edge point

#### Cues of edge detection

- Differences in color, intensity, or texture across the boundary
- Continuity and closure
- High-level knowledge

## Canny edge detector

- This is probably the most widely used edge detector in computer vision
- Theoretical model: step-edges corrupted by additive Gaussian noise
- Canny has shown that the first derivative of the Gaussian closely approximates the operator that optimizes the product of *signal-to-noise ratio* and localization

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

# Example



original image (Lena)

## Derivative of Gaussian filter



# Compute Gradients (DoG)



X-Derivative of Gaussian

Y-Derivative of Gaussian

**Gradient Magnitude** 

## Get Orientation at Each Pixel

- Threshold at minimum level
- Get orientation



theta = atan2(gy, gx)

# Non-maximum suppression for each orientation



At q, we have a maximum if the value is larger than those at both p and at r. Interpolate to get these values.



Source: D. Forsyth

## **Before Non-max Suppression**



#### After non-max suppression



#### Hysteresis thresholding

- Threshold at low/high levels to get weak/strong edge pixels
- Do connected components, starting from strong edge pixels



# Hysteresis thresholding

- Check that maximum value of gradient value is sufficiently large
  - drop-outs? use hysteresis
    - use a high threshold to start edge curves and a low threshold to continue them.



#### Final Canny Edges



# Canny edge detector

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
  - Thin multi-pixel wide "ridges" down to single pixel width
- 4. Thresholding and linking (hysteresis):
  - Define two thresholds: low and high
  - Use the high threshold to start edge curves and the low threshold to continue them

MATLAB: edge(image, 'canny')

## Effect of $\sigma$ (Gaussian kernel spread/size)



#### The choice of $\boldsymbol{\sigma}$ depends on desired behavior

- large  $\sigma$  detects large scale edges
- small  $\sigma$  detects fine features

# Learning to detect boundaries



 Berkeley segmentation database: <a href="http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/">http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/</a>

## **Representing Texture**



Source: Forsyth

## **Texture and Material**









http://www-cvr.ai.uiuc.edu/ponce\_grp/data/texture\_database/samples/

## **Texture and Orientation**







http://www-cvr.ai.uiuc.edu/ponce\_grp/data/texture\_database/samples/

### **Texture and Scale**



http://www-cvr.ai.uiuc.edu/ponce\_grp/data/texture\_database/samples/

## What is texture?

Regular or stochastic patterns caused by bumps, grooves, and/or markings

## How can we represent texture?

Compute responses of blobs and edges at various orientations and scales

#### Overcomplete representation: filter banks



Code for filter banks: www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

# Filter banks

 Process image with each filter and keep responses (or squared/abs responses)





## How can we represent texture?

Measure responses of blobs and edges at various orientations and scales

• Idea 1: Record simple statistics (e.g., mean, std.) of absolute filter responses

# Can you match the texture to the response?





Mean abs responses

## **Representing texture**

• Idea 2: take vectors of filter responses at each pixel and cluster them, then take histograms.



# **Building Visual Dictionaries**

- Sample patches from a database
  - E.g., 128 dimensional
    SIFT vectors
- 2. Cluster the patches
  - Cluster centers are the dictionary
- Assign a codeword (number) to each new patch, according to the nearest cluster





# pB boundary detector



## pB Boundary Detector



Figure from Fowlkes



## Global pB boundary detector



Figure from Fowlkes

## 45 years of boundary detection



Source: Arbelaez, Maire, Fowlkes, and Malik. TPAMI 2011 (pdf)

## Questions