10/03/11

Model Fitting

Computer Vision CS 143, Brown

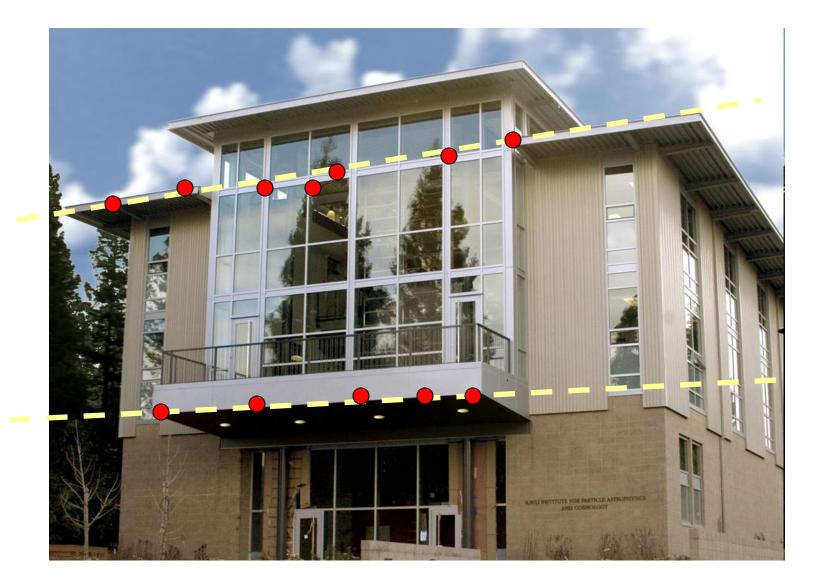
James Hays

Slides from Silvio Savarese, Svetlana Lazebnik, and Derek Hoiem

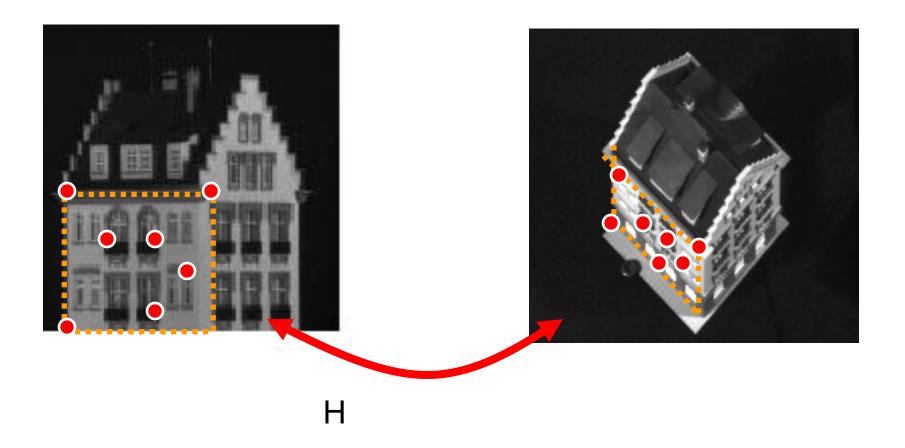
Fitting: find the parameters of a model that best fit the data

Alignment: find the parameters of the transformation that best align matched points

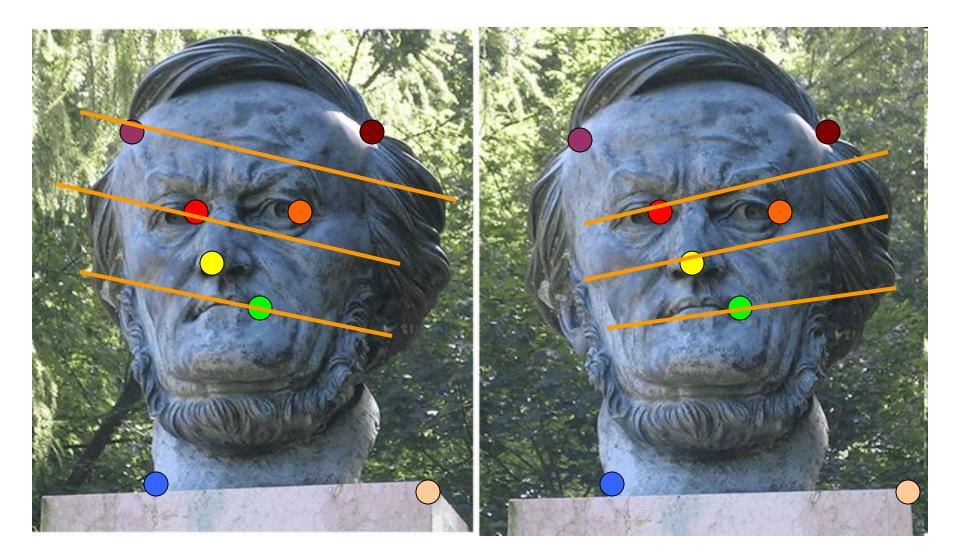
Example: Computing vanishing points



Example: Estimating an homographic transformation

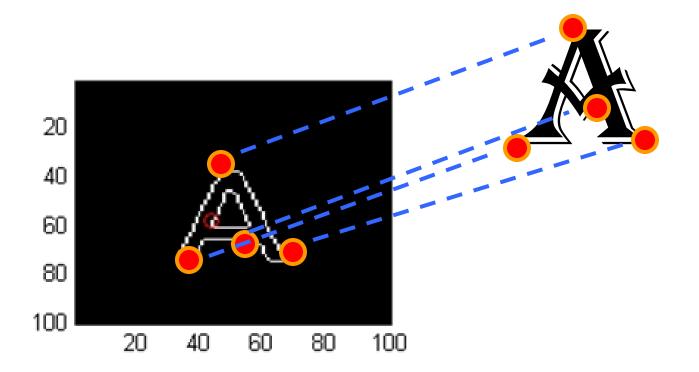


Example: Estimating "fundamental matrix" that corresponds two views



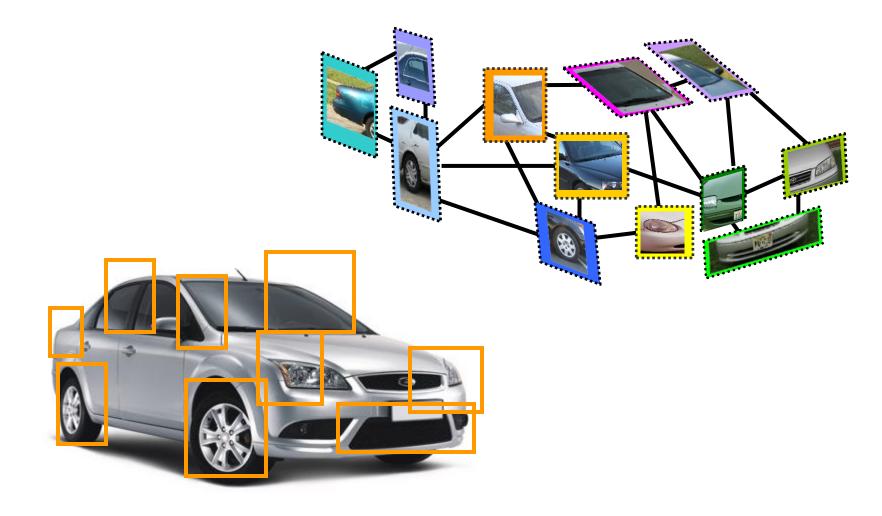
Slide from Silvio Savarese

Example: fitting an 2D shape template



Slide from Silvio Savarese

Example: fitting a 3D object model

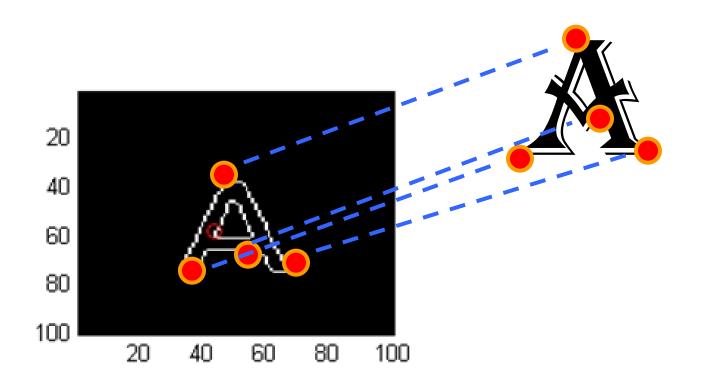


Critical issues: noisy data

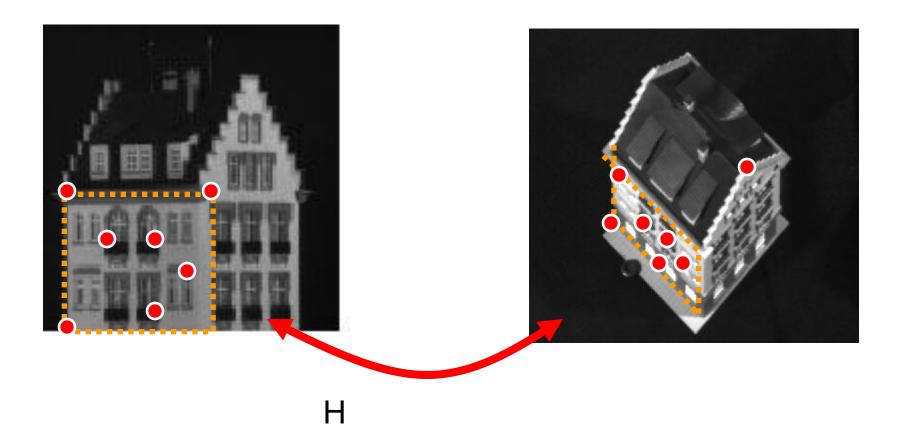
Slide from Silvio Savarese

Critical issues: intra-class variability

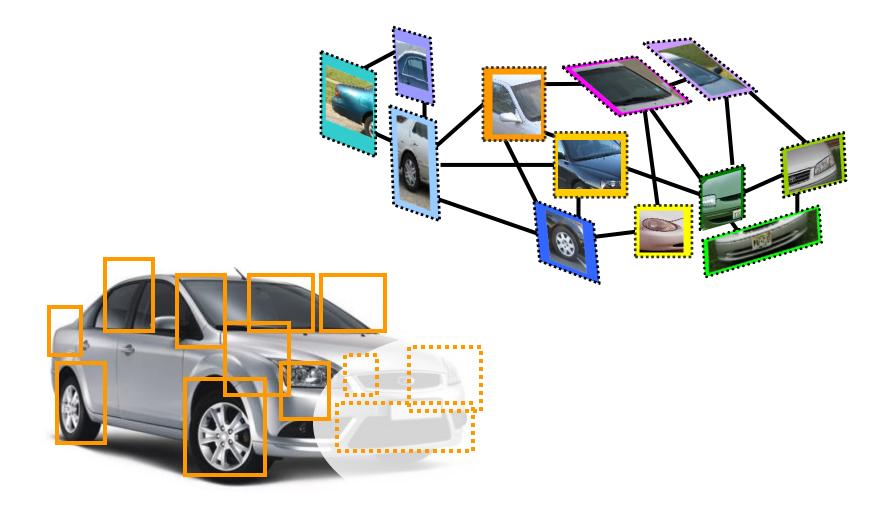
"All models are wrong, but some are useful." Box and Draper 1979



Critical issues: outliers



Critical issues: missing data (occlusions)



Fitting and Alignment

- Design challenges
 - Design a suitable **goodness of fit** measure
 - Similarity should reflect application goals
 - Encode robustness to outliers and noise
 - Design an **optimization** method
 - Avoid local optima
 - Find best parameters quickly

Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Iterative closest point (ICP)

- Hypothesize and test
 - Generalized Hough transform
 - RANSAC

Simple example: Fitting a line

Slide from Derek Hoiem

Least squares line fitting

•Data:
$$(x_1, y_1), \dots, (x_n, y_n)$$

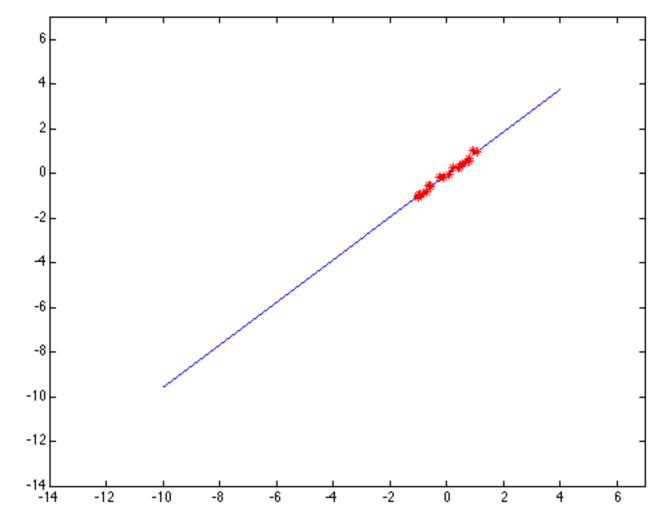
•Line equation: $y_i = mx_i + b$
•Find (m, b) to minimize
 $E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$
 $E = \sum_{i=1}^{n} (\mathbf{y}_i - mx_i - b)^2$
 $E = \sum_{i=1}^{n} (\mathbf{y}_i - mx_i - b)^2$
 $= \left\| \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} - \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \right\|^2 = \left\| \mathbf{Ap} - \mathbf{y} \right\|^2$
 $= \mathbf{y}^T \mathbf{y} - 2(\mathbf{Ap})^T \mathbf{y} + (\mathbf{Ap})^T (\mathbf{Ap})$
 $\frac{dE}{dB} = 2\mathbf{A}^T \mathbf{Ap} - 2\mathbf{A}^T \mathbf{y} = 0$
Matlab: $p = \mathbf{A} \setminus y_i$

$$\mathbf{A}^T \mathbf{A} \mathbf{p} = \mathbf{A}^T \mathbf{y} \Longrightarrow \mathbf{p} = \mathbf{A}^T \mathbf{A} \mathbf{y}$$

Modified from S. Lazebnik

Least squares: Robustness to noise

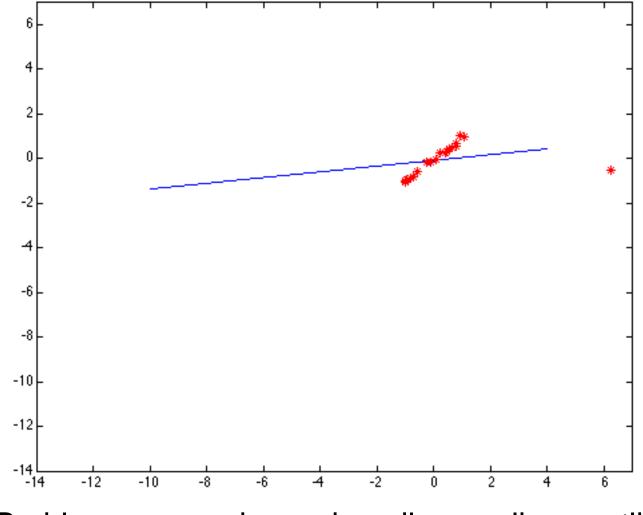
Least squares fit to the red points:



Slides from Svetlana Lazebnik

Least squares: Robustness to noise

Least squares fit with an outlier:



Problem: squared error heavily penalizes outliers

Search / Least squares conclusions

Good

- Clearly specified objective
- Optimization is easy (for least squares)

Bad

- Not appropriate for non-convex objectives
 - May get stuck in local minima
- Sensitive to outliers
 - Bad matches, extra points
- Doesn't allow you to get multiple good fits
 - Detecting multiple objects, lines, etc.

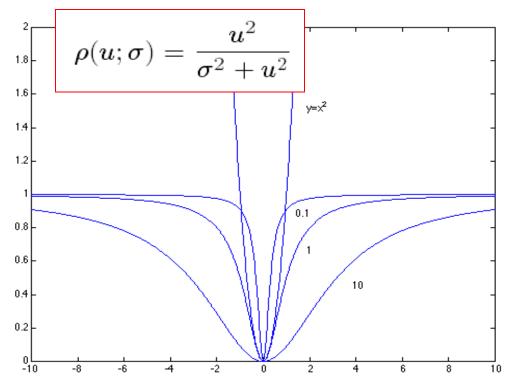
Robust least squares (to deal with outliers)

General approach:

minimize

$$\sum_{i} \boldsymbol{\rho} \left(\mathbf{u}_{i} \left(\mathbf{w}_{i}, \boldsymbol{\theta} \right) \right) = \sum_{i=1}^{n} (y_{i} - mx_{i} - b)^{2}$$

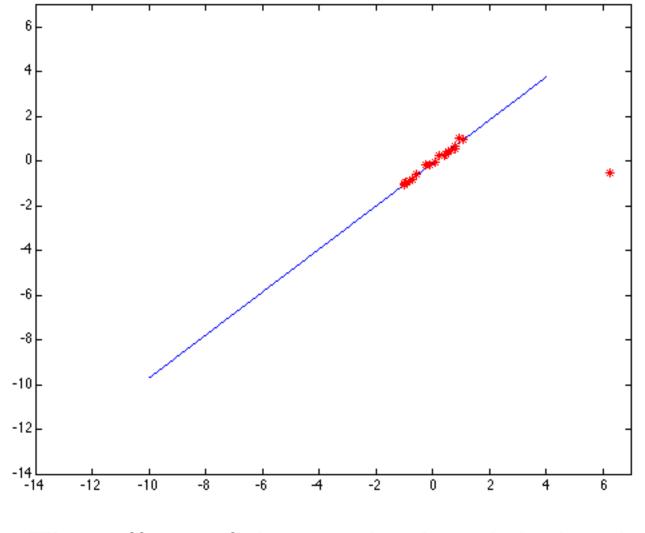
 $u_i(x_i, \theta)$ – residual of ith point w.r.t. model parameters ϑ ρ – robust function with scale parameter σ



The robust function ρ

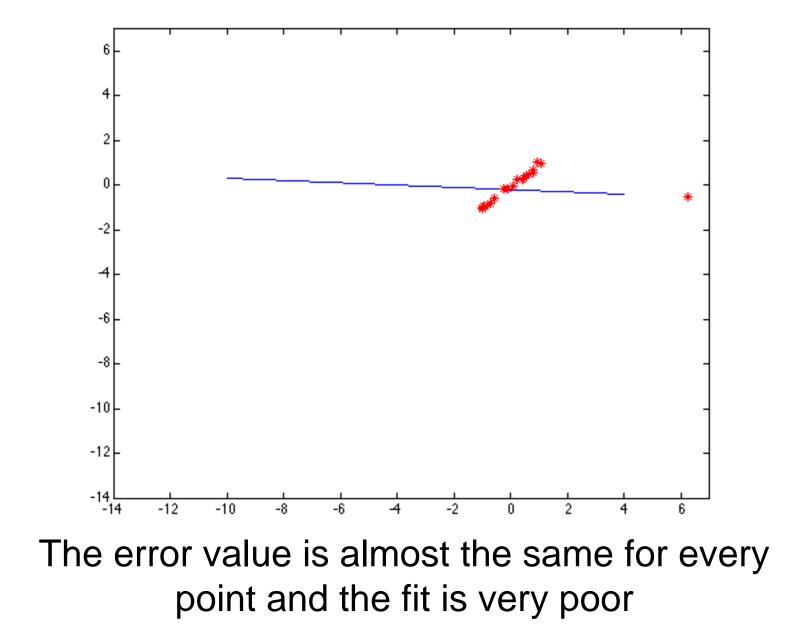
- Favors a configuration with small residuals
- Constant penalty for large residuals

Choosing the scale: Just right

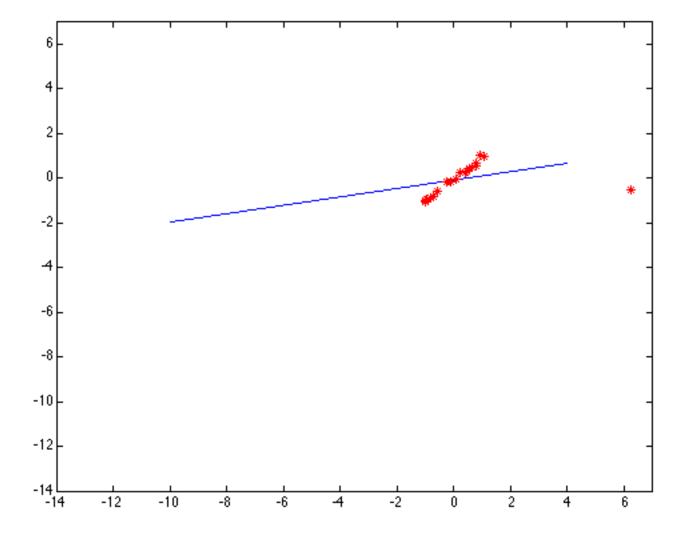


The effect of the outlier is minimized

Choosing the scale: Too small



Choosing the scale: Too large



Behaves much the same as least squares

Robust estimation: Details

- Robust fitting is a nonlinear optimization problem that must be solved iteratively
- Least squares solution can be used for initialization
- Adaptive choice of scale: approx. 1.5 times median residual (F&P, Sec. 15.5.1)

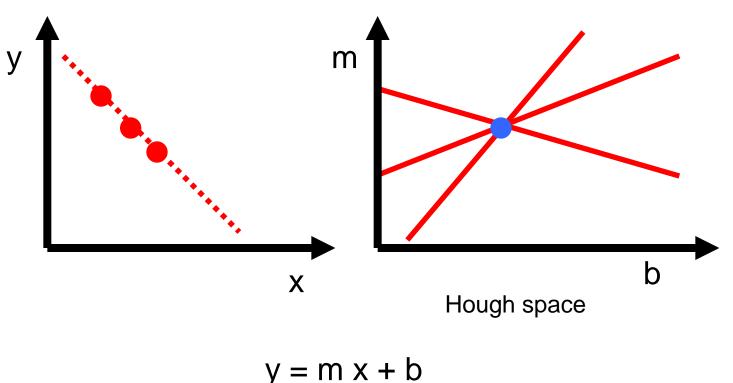
Hypothesize and test

- 1. Propose parameters
 - Try all possible
 - Each point votes for all consistent parameters
 - Repeatedly sample enough points to solve for parameters
- 2. Score the given parameters
 - Number of consistent points, possibly weighted by distance
- 3. Choose from among the set of parameters
 - Global or local maximum of scores
- 4. Possibly refine parameters using inliers

Hough transform

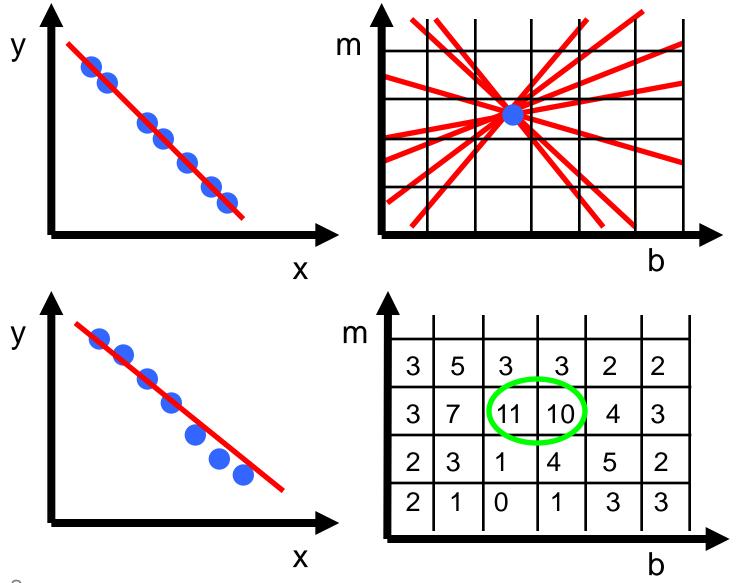
P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures,* Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains the data points best



Slide from S. Savarese

Hough transform



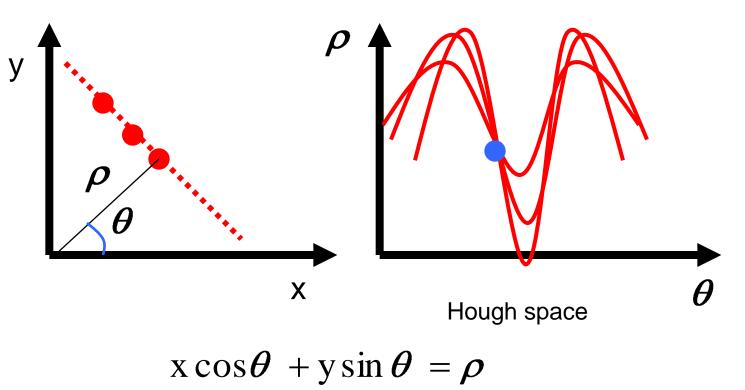
Slide from S. Savarese

Hough transform

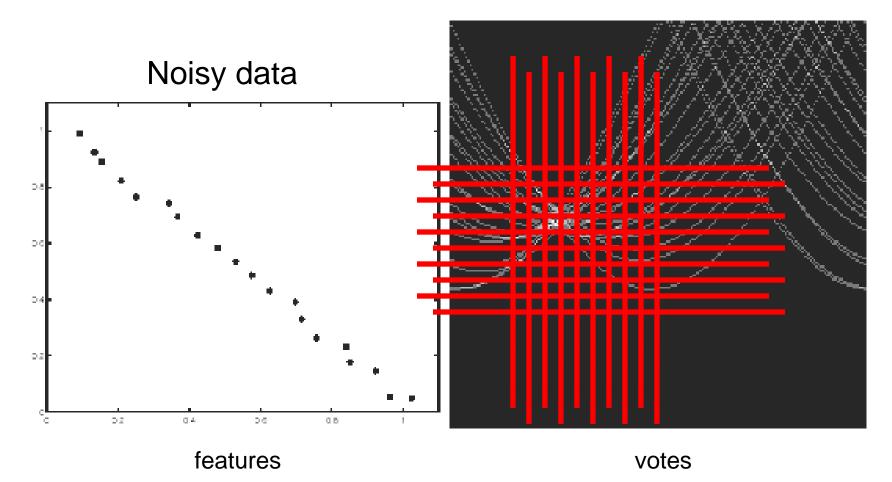
P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures,* Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Issue : parameter space [m,b] is unbounded...

Use a polar representation for the parameter space



Hough transform - experiments

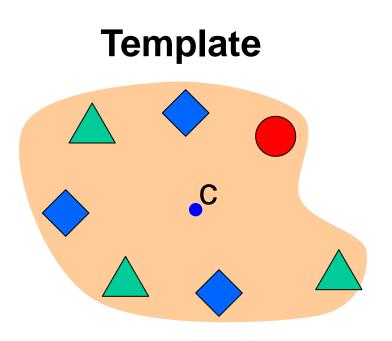


Issue: Grid size needs to be adjusted...

Slide from S. Savarese

Generalized Hough transform

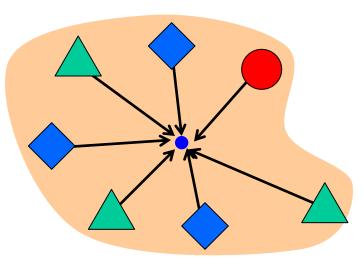
 We want to find a template defined by its reference point (center) and several distinct types of landmark points in stable spatial configuration

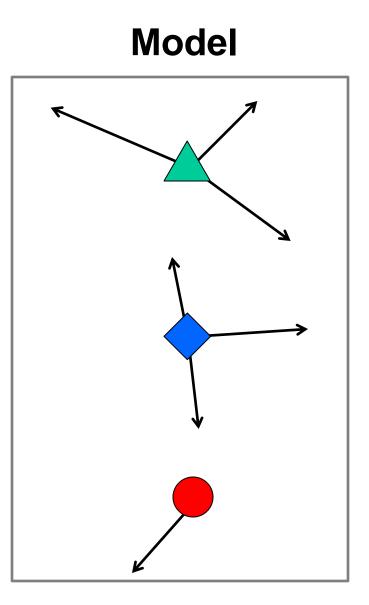


Generalized Hough transform

 Template representation: for each type of landmark point, store all possible displacement vectors towards the center

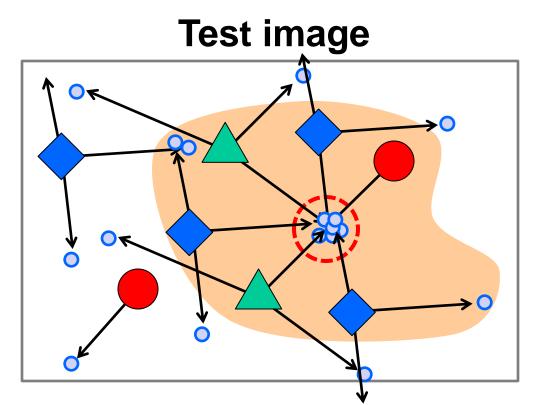
Template

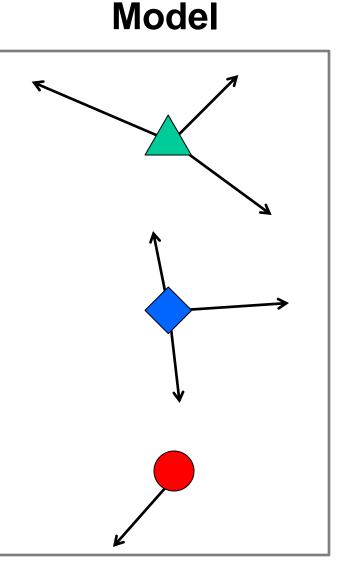




Generalized Hough transform

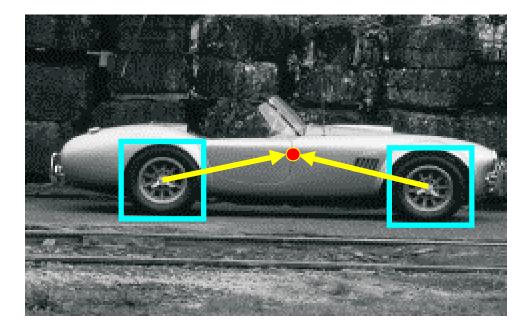
- Detecting the template:
 - For each feature in a new image, look up that feature type in the model and vote for the possible center locations associated with that type in the model





Application in recognition

Index displacements by "visual codeword"



visual codeword with displacement vectors

training image

B. Leibe, A. Leonardis, and B. Schiele, <u>Combined Object Categorization and</u> <u>Segmentation with an Implicit Shape Model</u>, ECCV Workshop on Statistical Learning in Computer Vision 2004

Application in recognition

Index displacements by "visual codeword"

test image

B. Leibe, A. Leonardis, and B. Schiele, <u>Combined Object Categorization and</u> <u>Segmentation with an Implicit Shape Model</u>, ECCV Workshop on Statistical Learning in Computer Vision 2004

Hough transform conclusions

Good

- Robust to outliers: each point votes separately
- Fairly efficient (often faster than trying all sets of parameters)
- Provides multiple good fits

Bad

- Some sensitivity to noise
- Bin size trades off between noise tolerance, precision, and speed/memory
 - Can be hard to find sweet spot
- Not suitable for more than a few parameters
 - grid size grows exponentially

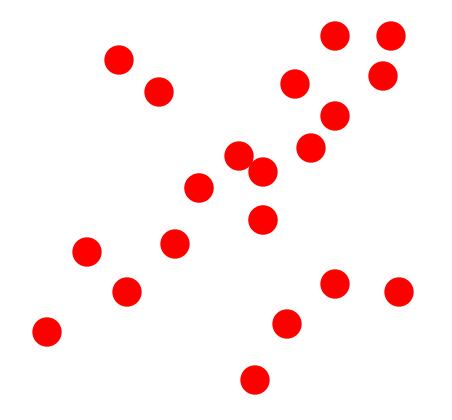
Common applications

- Line fitting (also circles, ellipses, etc.)
- Object instance recognition (parameters are affine transform)
- Object category recognition (parameters are position/scale)

RANSAC

(RANdom SAmple Consensus) :

Fischler & Bolles in '81.

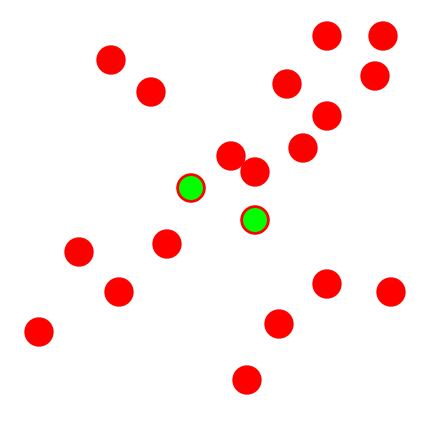


Algorithm:

- 1. Sample (randomly) the number of points required to fit the model
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

RANSAC

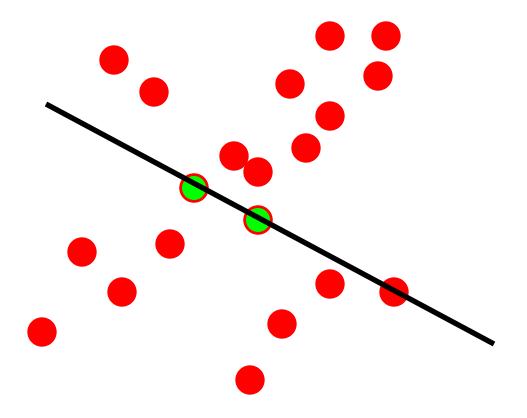
Line fitting example



Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

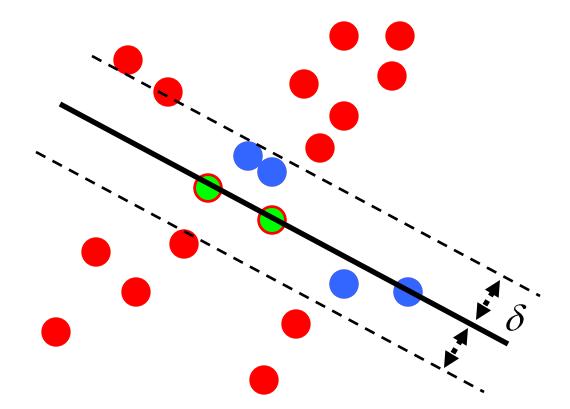
Line fitting example



Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

Line fitting example

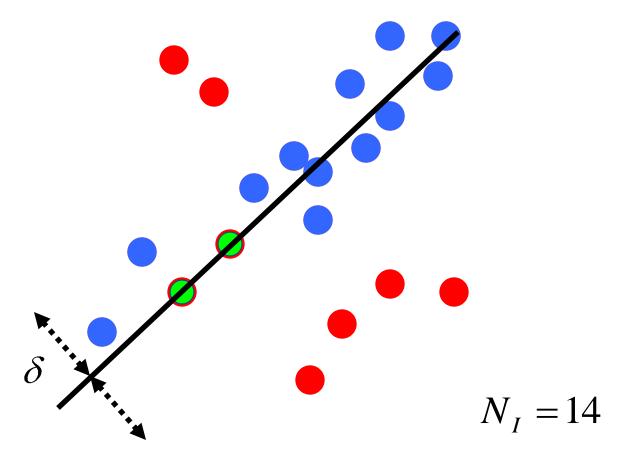


 $N_{I} = 6$

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

RANSAC



Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

Choosing the parameters

- Initial number of points s
 - Typically minimum number needed to fit the model
- Distance threshold t
 - Choose *t* so probability for inlier is *p* (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ : t²=3.84 σ ²
- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

	proportion of outliers <i>e</i>							
	S	5%	10%	20%	25%	30%	40%	50%
$\sqrt{3}$ $\sqrt{1}$ $\sqrt{1}$	2	2	3	5	6	7	11	17
q = q = e = 1 = p	3	3	4	7	9	11	19	35
	4	3	5	9	13	17	34	72
	5	4	6	12	17	26	57	146
$N = \log \left(-p\right) \log \left(-\left(-e\right)\right)$	6	4	7	16	24	37	97	293
	7	4	8	20	33	54	163	588
	8	5	9	26	44	78	272	1177

Source: M. Pollefeys

RANSAC conclusions

Good

- Robust to outliers
- Applicable for larger number of parameters than Hough transform
- Parameters are easier to choose than Hough transform

Bad

- Computational time grows quickly with fraction of outliers and number of parameters
- Not good for getting multiple fits

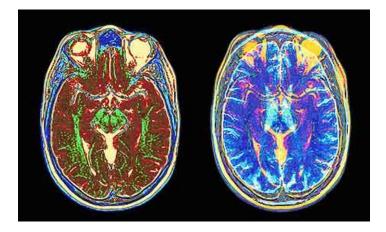
Common applications

- Computing a homography (e.g., image stitching)
- Estimating fundamental matrix (relating two views)

What if you want to align but have no prior matched pairs?

• Hough transform and RANSAC not applicable

Important applications



Medical imaging: match brain scans or contours

Robotics: match point clouds

Slide from Derek Hoiem

Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets of points

- **1.** Assign each point in {Set 1} to its nearest neighbor in {Set 2}
- 2. Estimate transformation parameters
 - e.g., least squares or robust least squares
- **3. Transform** the points in {Set 1} using estimated parameters
- 4. Repeat steps 1-3 until change is very small