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 Fitting: find the parameters of a model that 
best fit the data 

 

 

 Alignment: find the parameters of the 
transformation that best align matched points 

 

 



Example: Computing vanishing points 
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Example: Estimating an homographic 
transformation 
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Example: Estimating “fundamental matrix” 
that corresponds two views 
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Example: fitting an 2D shape template 
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Example: fitting a 3D object model 
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Critical issues: noisy data 
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A 

Critical issues: intra-class variability 

“All models are wrong, but some are useful.”  Box and Draper 1979 
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Critical issues: outliers 
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Critical issues: missing data (occlusions) 
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Fitting and Alignment 

• Design challenges 

– Design a suitable goodness of fit measure 

• Similarity should reflect application goals 

• Encode robustness to outliers and noise 

– Design an optimization method 

• Avoid local optima 

• Find best parameters quickly 
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Fitting and Alignment: Methods 

 

• Global optimization / Search for parameters 

– Least squares fit 

– Robust least squares 

– Iterative closest point (ICP) 

 

• Hypothesize and test 

– Generalized Hough transform 

– RANSAC 
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Simple example: Fitting a line 
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Least squares line fitting 
•Data: (x1, y1), …, (xn, yn) 

•Line equation: yi = m xi + b 

•Find (m, b) to minimize  
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Matlab: p = A \ y; 

Modified from S. Lazebnik 



Least squares: Robustness to noise 

Least squares fit to the red points: 
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Least squares: Robustness to noise 

Least squares fit with an outlier: 

Problem: squared error heavily penalizes outliers 



Search / Least squares conclusions 

Good 
• Clearly specified objective 

• Optimization is easy (for least squares) 

 

Bad 
• Not appropriate for non-convex objectives 

– May get stuck in local minima 

• Sensitive to outliers 
– Bad matches, extra points 

• Doesn’t allow you to get multiple good fits 
– Detecting multiple objects, lines, etc. 
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Robust least squares (to deal with outliers) 
General approach:  
    minimize 

 
  

 ui (xi, θ) – residual of ith point w.r.t. model parameters θ 
ρ – robust function with scale parameter σ   

;,xu ii

i

The robust function ρ  

• Favors a configuration  

with small residuals 

• Constant penalty for large 

residuals 
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Choosing the scale: Just right 

The effect of the outlier is minimized 



The error value is almost the same for every 

point and the fit is very poor 

Choosing the scale: Too small 



Choosing the scale: Too large 

Behaves much the same as least squares 



Robust estimation: Details 

• Robust fitting is a nonlinear optimization 

problem that must be solved iteratively 

• Least squares solution can be used for 

initialization 

• Adaptive choice of scale: approx. 1.5 times 

median residual (F&P, Sec. 15.5.1) 



Hypothesize and test 

1. Propose parameters 
– Try all possible 

– Each point votes for all consistent parameters 

– Repeatedly sample enough points to solve for parameters 

 

2. Score the given parameters 
– Number of consistent points, possibly weighted by 

distance 

 

3. Choose from among the set of parameters 
– Global or local maximum of scores 

 

4. Possibly refine parameters using inliers 



x 

y 

b 

m 

y = m x + b 

Hough transform 

Given a set of points, find the curve or line that explains 

the data points best 

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High 

Energy Accelerators and Instrumentation, 1959  

Hough space 
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Hough transform 
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x 

y 

Hough transform 

Issue : parameter space [m,b] is unbounded… 

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High 

Energy Accelerators and Instrumentation, 1959  

Hough space 

  siny  cosx

 

Use a polar representation for the parameter space  
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features votes 

 

Issue: Grid size needs to be adjusted… 

Hough transform - experiments 

Noisy data 
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Generalized Hough transform 

• We want to find a template defined by its 

reference point (center) and several distinct 

types of landmark points in stable spatial 

configuration 

c 

Template 



Generalized Hough transform 

• Template representation: 

for each type of landmark 

point, store all possible 

displacement vectors 

towards the center 

Model 

Template 



Generalized Hough transform 

• Detecting the template: 
• For each feature in a new image, 

look up that feature type in the 

model and vote for the possible 

center locations associated with 

that type in the model 

Model 

Test image 



Application in recognition 

• Index displacements by “visual codeword” 

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and 

Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical 

Learning in Computer Vision 2004 

training image 

visual codeword with 

displacement vectors 

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf


Application in recognition 

• Index displacements by “visual codeword” 

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and 

Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical 

Learning in Computer Vision 2004 

test image 

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf


Hough transform conclusions 
Good 
• Robust to outliers: each point votes separately 
• Fairly efficient (often faster than trying all sets of parameters) 
• Provides multiple good fits 

 

Bad 
• Some sensitivity to noise 
• Bin size trades off between noise tolerance, precision, and 

speed/memory 
– Can be hard to find sweet spot 

• Not suitable for more than a few parameters 
– grid size grows exponentially 

 

Common applications 
• Line fitting (also circles, ellipses, etc.) 
• Object instance recognition (parameters are affine transform) 
• Object category recognition  (parameters are position/scale) 



RANSAC 

Algorithm: 
 

1.  Sample (randomly) the number of points required to fit the model 

2.  Solve for model parameters using samples  

3.  Score by the fraction of inliers within a preset threshold of the model 

 

Repeat 1-3 until the best model is found with high confidence 

Fischler & Bolles in „81. 

(RANdom SAmple Consensus) : 



RANSAC 

Algorithm: 
 

1.  Sample (randomly) the number of points required to fit the model (#=2) 

2.  Solve for model parameters using samples  

3.  Score by the fraction of inliers within a preset threshold of the model 

 

Repeat 1-3 until the best model is found with high confidence 

Illustration by Savarese 

Line fitting example 



RANSAC 

Algorithm: 
 

1.  Sample (randomly) the number of points required to fit the model (#=2) 

2.  Solve for model parameters using samples  

3.  Score by the fraction of inliers within a preset threshold of the model 

 

Repeat 1-3 until the best model is found with high confidence 

Line fitting example 



RANSAC 

6IN

Algorithm: 
 

1.  Sample (randomly) the number of points required to fit the model (#=2) 

2.  Solve for model parameters using samples  

3.  Score by the fraction of inliers within a preset threshold of the model 

 

Repeat 1-3 until the best model is found with high confidence 

Line fitting example 



RANSAC 

14IN
Algorithm: 
 

1.  Sample (randomly) the number of points required to fit the model (#=2) 

2.  Solve for model parameters using samples  

3.  Score by the fraction of inliers within a preset threshold of the model 

 

Repeat 1-3 until the best model is found with high confidence 



Choosing the parameters 

• Initial number of points s 
• Typically minimum number needed to fit the model 

• Distance threshold t 
• Choose t so probability for inlier is p (e.g. 0.95)  

• Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2 

• Number of samples N 
• Choose N so that, with probability p, at least one random 

sample is free from outliers (e.g. p=0.99) (outlier ratio: e) 

s
epN 11log/1log

pe
Ns

111

proportion of outliers e 

s 5% 10% 20% 25% 30% 40% 50% 

2 2 3 5 6 7 11 17 

3 3 4 7 9 11 19 35 

4 3 5 9 13 17 34 72 

5 4 6 12 17 26 57 146 

6 4 7 16 24 37 97 293 

7 4 8 20 33 54 163 588 

8 5 9 26 44 78 272 1177 

Source: M. Pollefeys 



RANSAC conclusions 

Good 
• Robust to outliers 
• Applicable for larger number of parameters than Hough 

transform 
• Parameters are easier to choose than Hough transform 

 

Bad 
• Computational time grows quickly with fraction of outliers 

and number of parameters  
• Not good for getting multiple fits 

 

 

Common applications 
• Computing a homography (e.g., image stitching) 
• Estimating fundamental matrix (relating two views) 



What if you want to align but have no prior matched 
pairs? 

 

• Hough transform and RANSAC not applicable 

 

• Important applications 

 

Medical imaging: match brain 

scans or contours 

Robotics: match point clouds 
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Iterative Closest Points (ICP) Algorithm 

 Goal: estimate transform between two dense 
sets of points 

 

 
1. Assign each point in {Set 1} to its nearest neighbor in 

{Set 2} 

2. Estimate transformation parameters  
– e.g., least squares or robust least squares 

3. Transform the points in {Set 1} using estimated 
parameters 

4. Repeat steps 1-3 until change is very small 
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