10/14/11

Local Features and Bag of Words Models

Computer Vision CS 143, Brown

James Hays

Slides from Svetlana Lazebnik, Derek Hoiem, Antonio Torralba, David Lowe, Fei Fei Li and others

Computer Engineering Distinguished Lecture Talk

Compressive Sensing, Sparse Representations and Dictionaries: New Tools for Old Problems in Computer Vision and Pattern Recognition

Rama Chellappa, University of Maryland, College Park, MD 20742

Abstract: Emerging theories of compressive sensing, sparse representations and dictionaries are enabling new solutions to several problems in computer vision and pattern recognition. In this talk, I will present examples of compressive acquisition of video sequences, sparse representation-based methods for face and iris recognition, reconstruction of images and shapes from gradients and *dictionarybased methods for object and activity recognition*.

12:00 noon, Friday October 14, 2011, Lubrano Conference room, CIT room 477.

Previous Class

• Overview and history of recognition

Specific recognition tasks

Scene categorization or classification

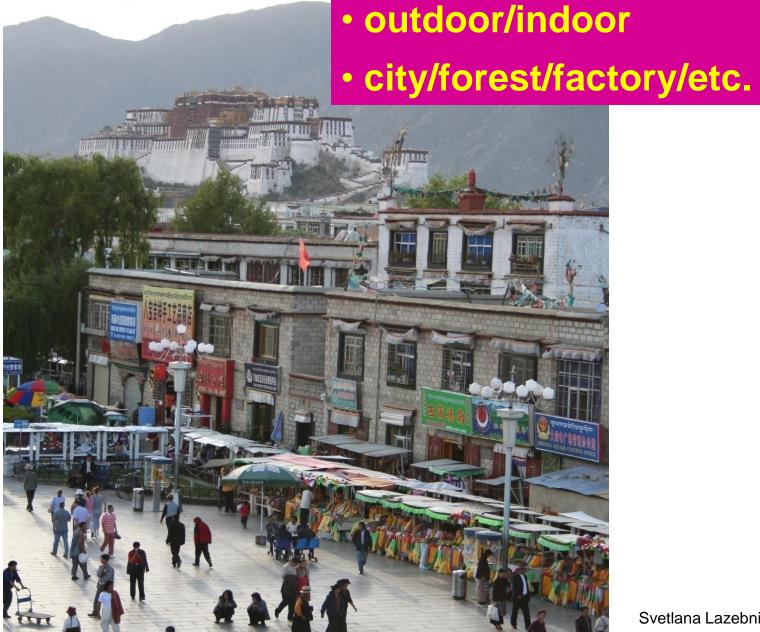
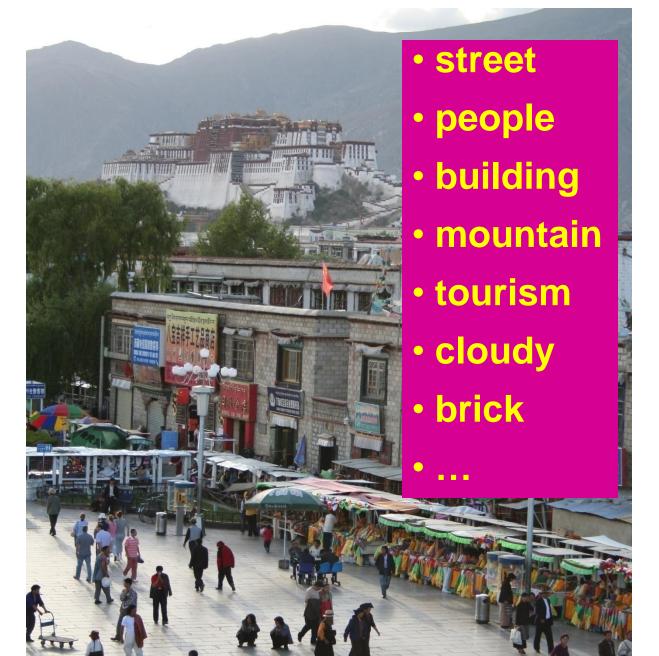


Image annotation / tagging / attributes



Object detection

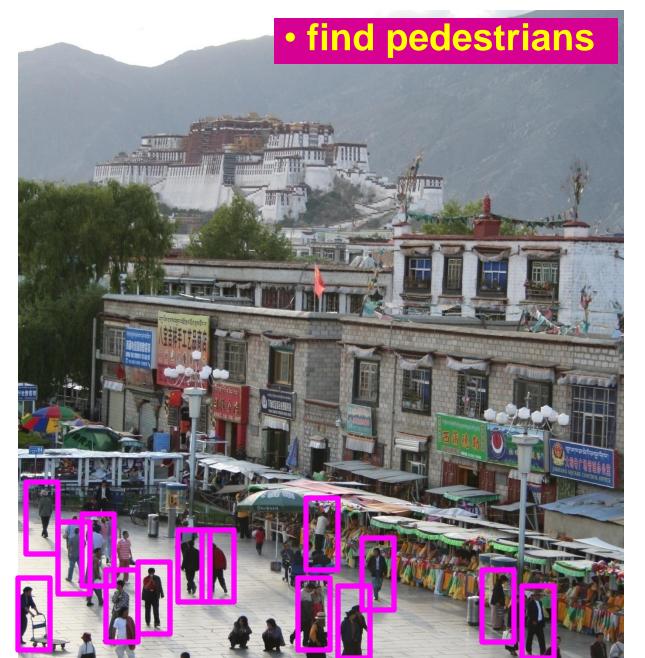


Image parsing

Today's class: features and bag of words models

- Representation
 - Gist descriptor
 - Image histograms
 - Sift-like features
- Bag of Words models
 - Encoding methods

Image Categorization

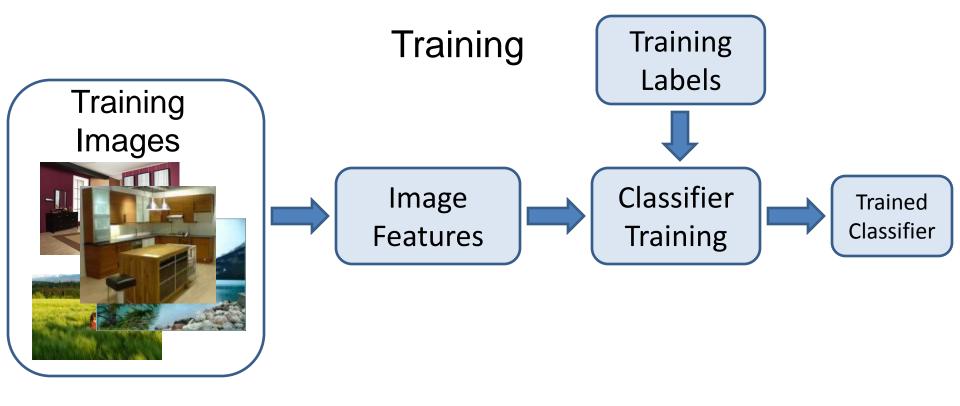
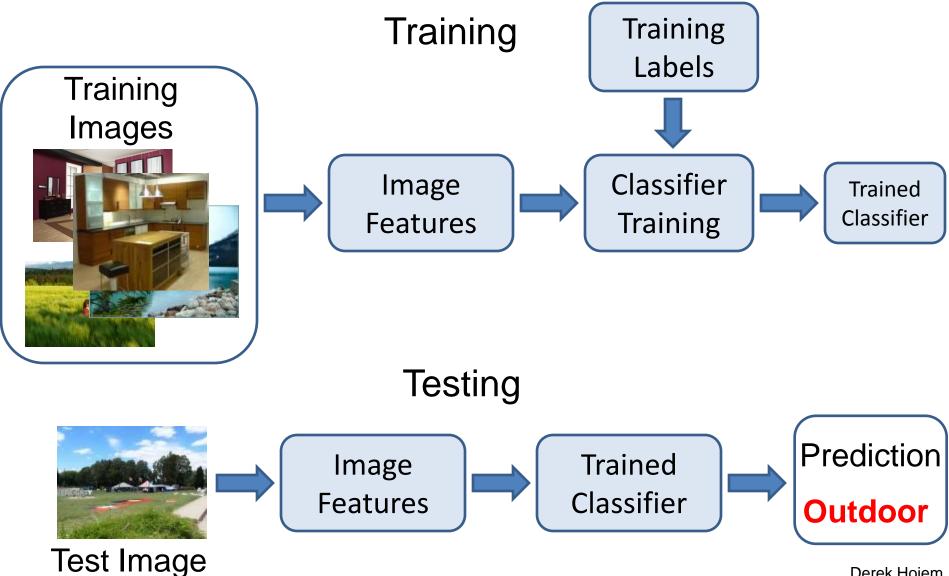


Image Categorization



Derek Hoiem

Part 1: Image features

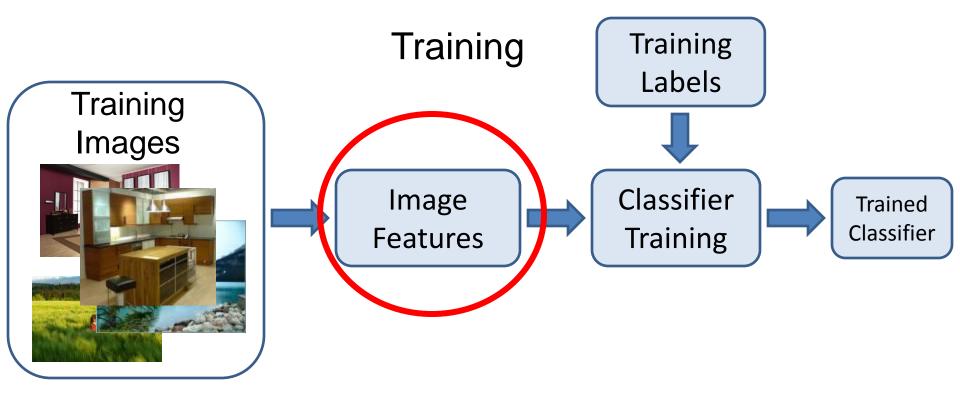


Image representations

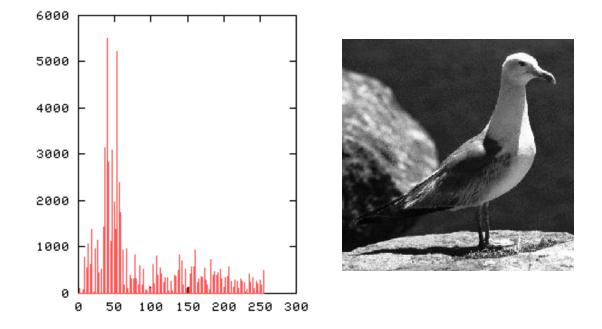
Templates

- Intensity, gradients, etc.

• Histograms

- Color, texture, SIFT descriptors, etc.

Image Representations: Histograms



Global histogram

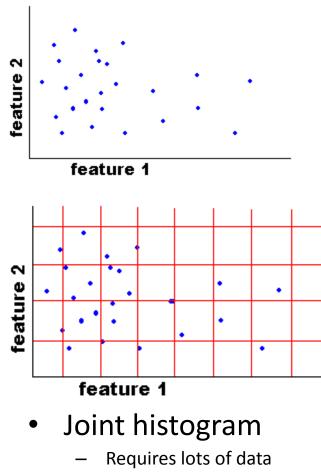
• Represent distribution of features

- Color, texture, depth, ...

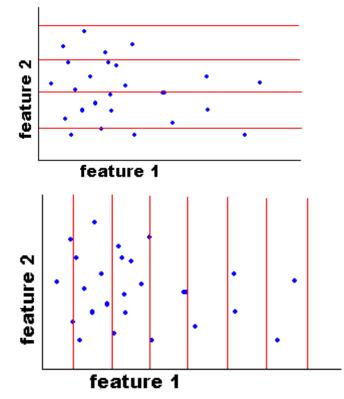
Images from Dave Kauchak

Image Representations: Histograms

Histogram: Probability or count of data in each bin



 Loss of resolution to avoid empty bins



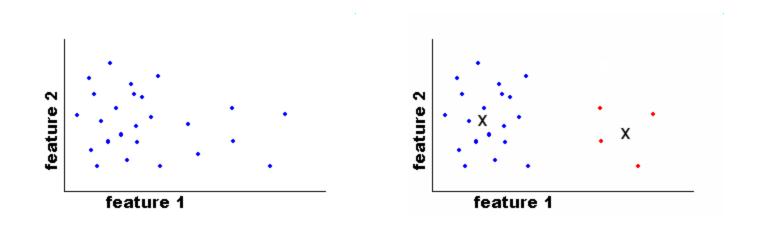
Marginal histogram

- Requires independent features
- More data/bin than joint histogram

Images from Dave Kauchak

Image Representations: Histograms

Clustering



Use the same cluster centers for all images

Images from Dave Kauchak

Computing histogram distance

histint
$$(h_i, h_j) = 1 - \sum_{m=1}^{K} \min \left(\mathbf{h}_i(m), h_j(m) \right)$$

Histogram intersection (assuming normalized histograms)

$$\chi^{2}(h_{i},h_{j}) = \frac{1}{2} \sum_{m=1}^{K} \frac{[h_{i}(m) - h_{j}(m)]^{2}}{h_{i}(m) + h_{j}(m)}$$

Chi-squared Histogram matching distance

Cars found by color histogram matching using chi-squared

Histograms: Implementation issues

Quantization

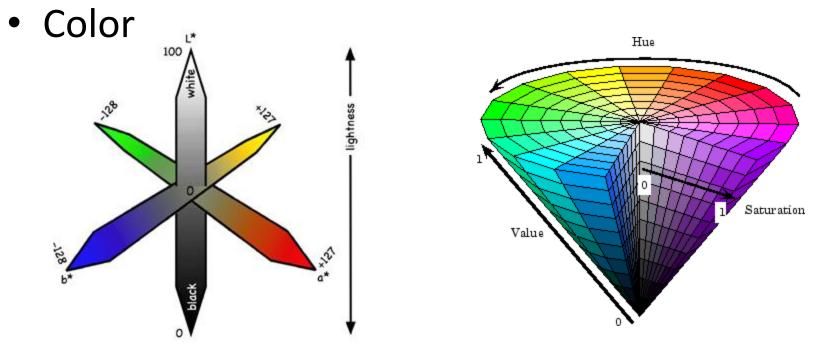
- Grids: fast but applicable only with few dimensions
- Clustering: slower but can quantize data in higher dimensions

Few Bins Need less data Coarser representation

Many Bins Need more data Finer representation

- Matching
 - Histogram intersection or Euclidean may be faster
 - Chi-squared often works better
 - Earth mover's distance is good for when nearby bins represent similar values

What kind of things do we compute histograms of?



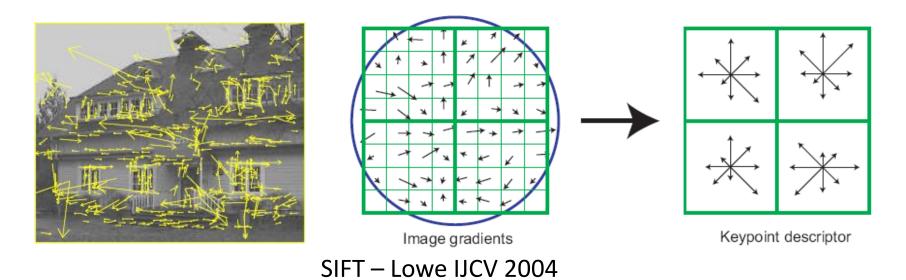
L*a*b* color space

HSV color space

• Texture (filter banks or HOG over regions)

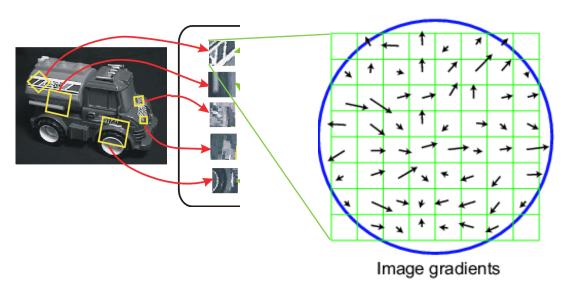
What kind of things do we compute histograms of?

• Histograms of oriented gradients



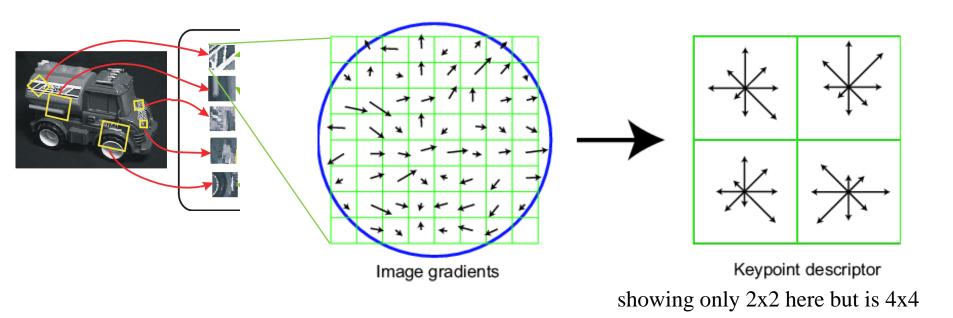
SIFT vector formation

- Computed on rotated and scaled version of window according to computed orientation & scale
 resample the window
- Based on gradients weighted by a Gaussian of variance half the window (for smooth falloff)



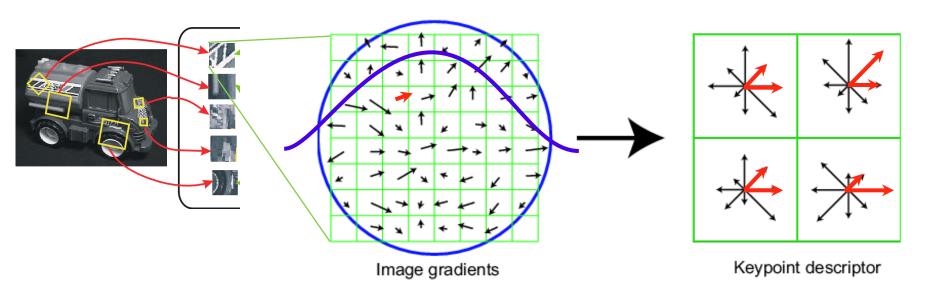
SIFT vector formation

- 4x4 array of gradient orientation histograms
 not really histogram, weighted by magnitude
- 8 orientations x 4x4 array = 128 dimensions
- Motivation: some sensitivity to spatial layout, but not too much.



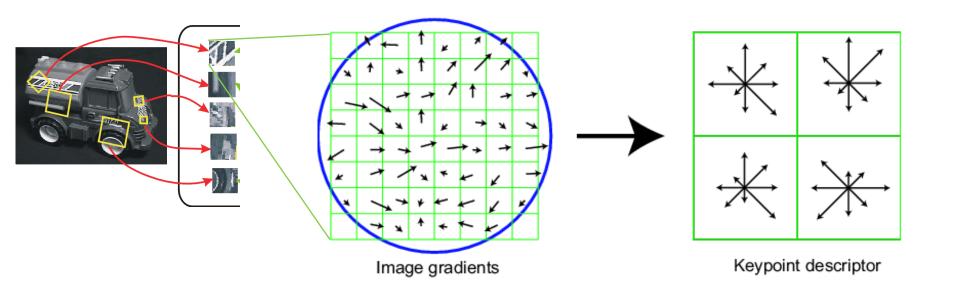
Ensure smoothness

- Gaussian weight
- Trilinear interpolation
 - a given gradient contributes to 8 bins:
 4 in space times 2 in orientation

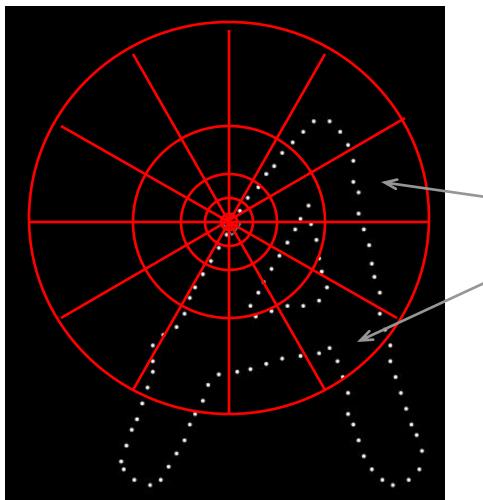


Reduce effect of illumination

- 128-dim vector normalized to 1
- Threshold gradient magnitudes to avoid excessive influence of high gradients
 - after normalization, clamp gradients >0.2
 - renormalize



Local Descriptors: Shape Context



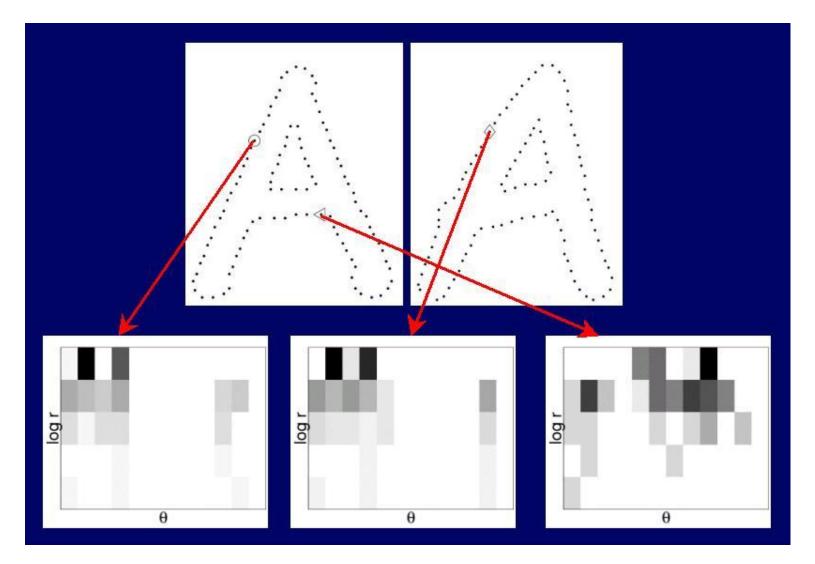
Count the number of points inside each bin, e.g.:

- Count = 4 : Count = 10

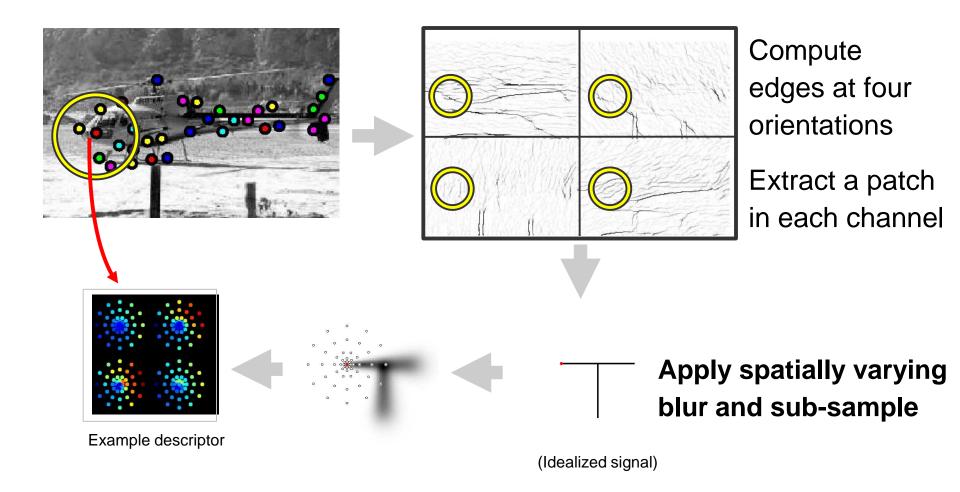
Log-polar binning: more precision for nearby points, more flexibility for farther points.

Belongie & Malik, ICCV 2001

Shape Context Descriptor



Local Descriptors: Geometric Blur



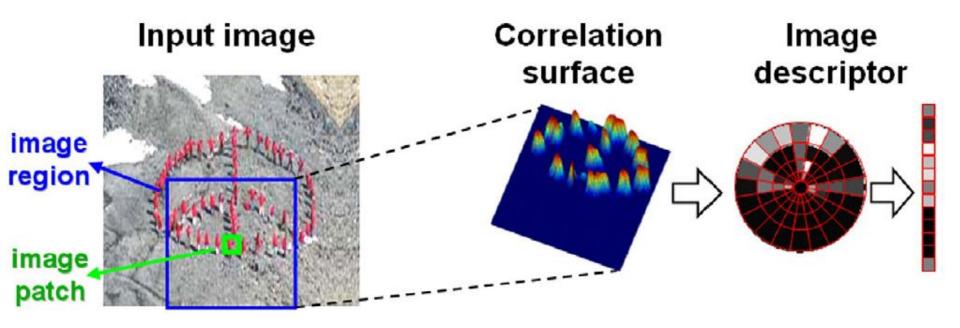
K. Grauman, B. Leibe

Self-similarity Descriptor

Figure 1. These images of the same object (a heart) do NOT share common image properties (colors, textures, edges), but DO share a similar geometric layout of local internal self-similarities.

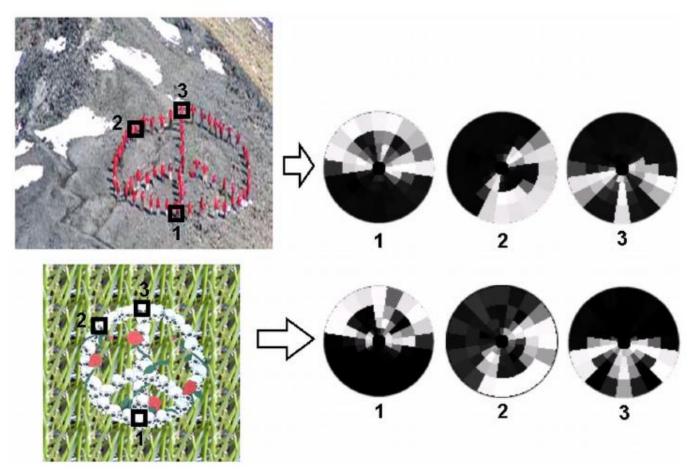
Matching Local Self-Similarities across Images and Videos, Shechtman and Irani, 2007

Self-similarity Descriptor



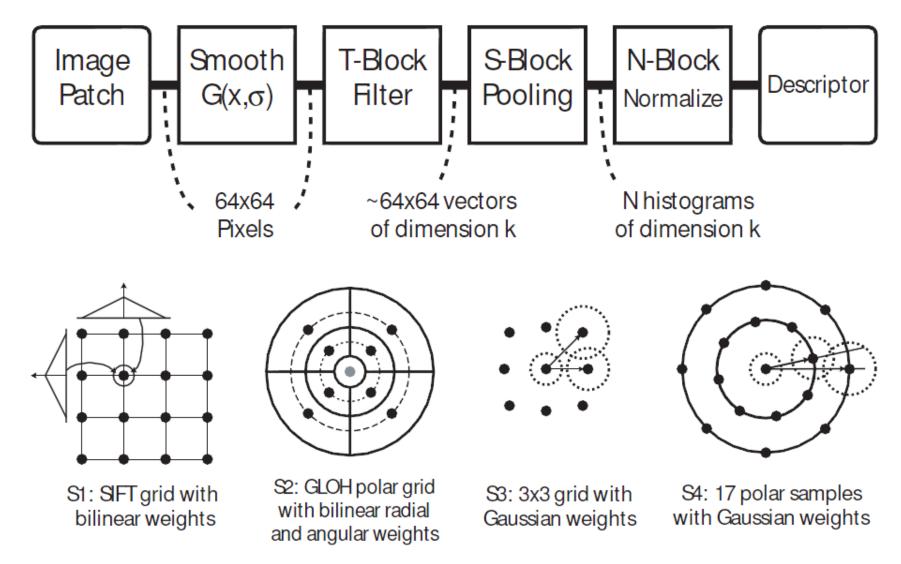
Matching Local Self-Similarities across Images and Videos, Shechtman and Irani, 2007

Self-similarity Descriptor



Matching Local Self-Similarities across Images and Videos, Shechtman and Irani, 2007

Learning Local Image Descriptors, Winder and Brown, 2007



Right features depend on what you want to know

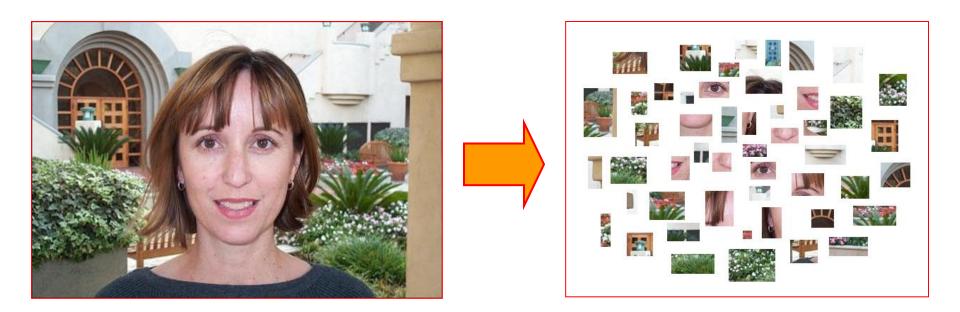
- Shape: scene-scale, object-scale, detail-scale
 - 2D form, shading, shadows, texture, linear perspective
- Material properties: albedo, feel, hardness, ...
 Color, texture
- Motion
 - Optical flow, tracked points
- Distance
 - Stereo, position, occlusion, scene shape
 - If known object: size, other objects

Things to remember about representation

• Most features can be thought of as templates, histograms (counts), or combinations

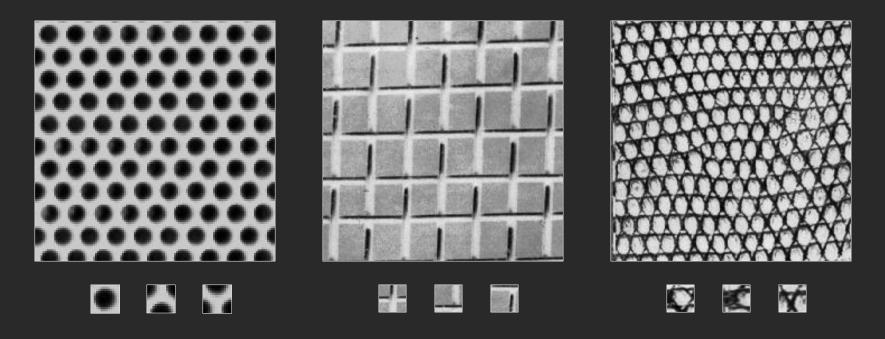
- Think about the right features for the problem
 - Coverage
 - Concision
 - Directness

Bag-of-features models



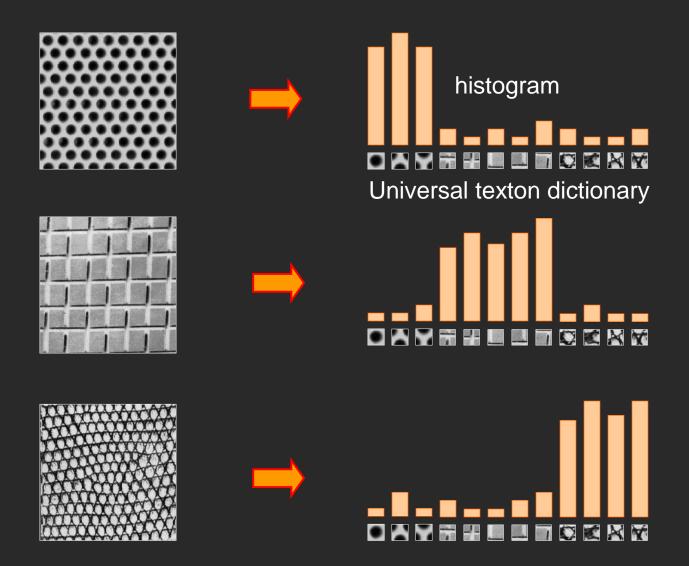
Origin 1: Texture recognition

- Texture is characterized by the repetition of basic elements or *textons*
- For stochastic textures, it is the identity of the textons, not their spatial arrangement, that matters



Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Origin 1: Texture recognition



Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Orderless document representation: frequencies of words
 from a dictionary Salton & McGill (1983)

Orderless document representation: frequencies of words
 from a dictionary Salton & McGill (1983)

US Presidential Speeches Tag Cloud http://chir.ag/phernalia/preztags/

Orderless document representation: frequencies of words
 from a dictionary Salton & McGill (1983)

US Presidential Speeches Tag Cloud http://chir.ag/phernalia/preztags/

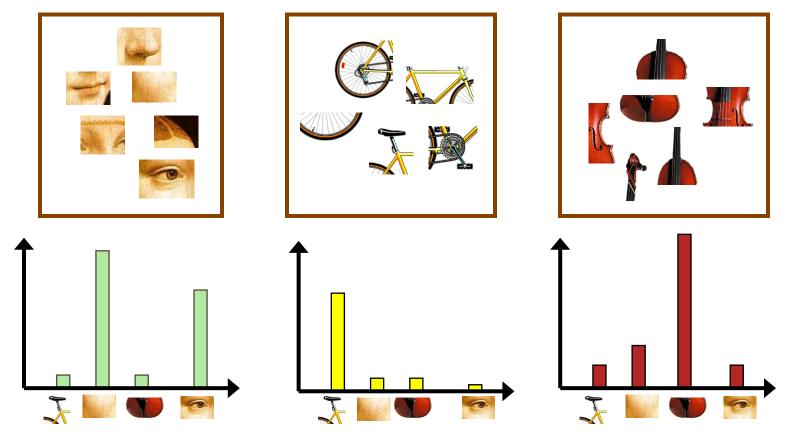
Orderless document representation: frequencies of words
 from a dictionary Salton & McGill (1983)

2007-01-23: State of the Union Address George W. Bush (2001-)						
abandon choices c deficit c	1962-	10-22: Soviet Missiles in Cuba John F. Kennedy (1961-63)				
expand	aban do build u	1941-12-08: Request for a Declaration of War Franklin D. Roosevelt (1933-45)				
insurgen palestini	declined elimina	abandoning acknowledge aggression aggressors airplanes armaments armed army assault assembly authorizations bombing britain british cheerfully claiming constitution curtail december defeats defending delays democratic dictators disclose				
septemb violenc	halt ha modern	german germany god guam harbor hawaii hemisphere hint hitler hostilities immune improving indies innumerable				
	recession islands isolate Japanese labor metals midst midway navy nazis obligation offensive					
	surveil	officially Pacific partisanship patriotism pearl peril perpetrated perpetual philippine preservation privilege reject repaired resisting retain revealing rumors seas soldiers speaks speedy stamina strength sunday sunk supremacy tanks taxes				
		treachery true tyranny undertaken victory Wartime washington				

US Presidential Speeches Tag Cloud http://chir.ag/phernalia/preztags/

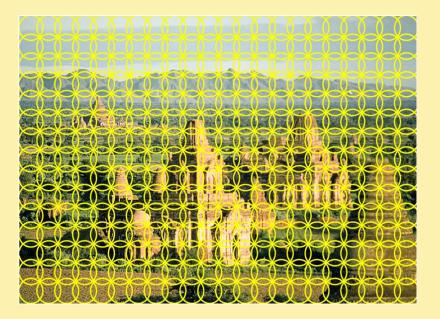
Bag-of-features steps

- 1. Extract features
- 2. Learn "visual vocabulary"
- 3. Quantize features using visual vocabulary
- 4. Represent images by frequencies of "visual words"

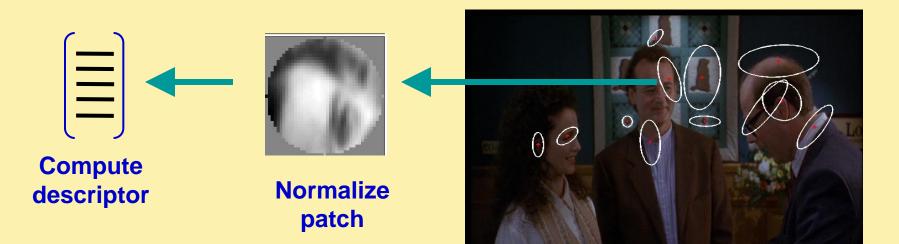


1. Feature extraction

Regular grid or interest regions

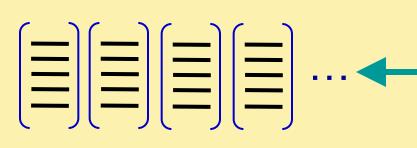


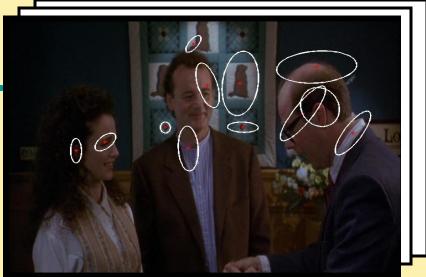
1. Feature extraction



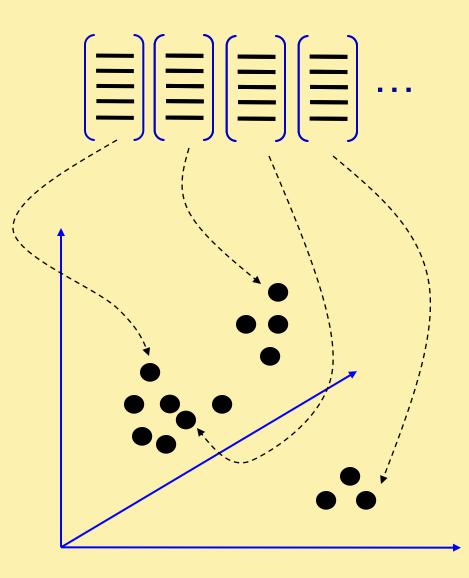
Detect patches

1. Feature extraction

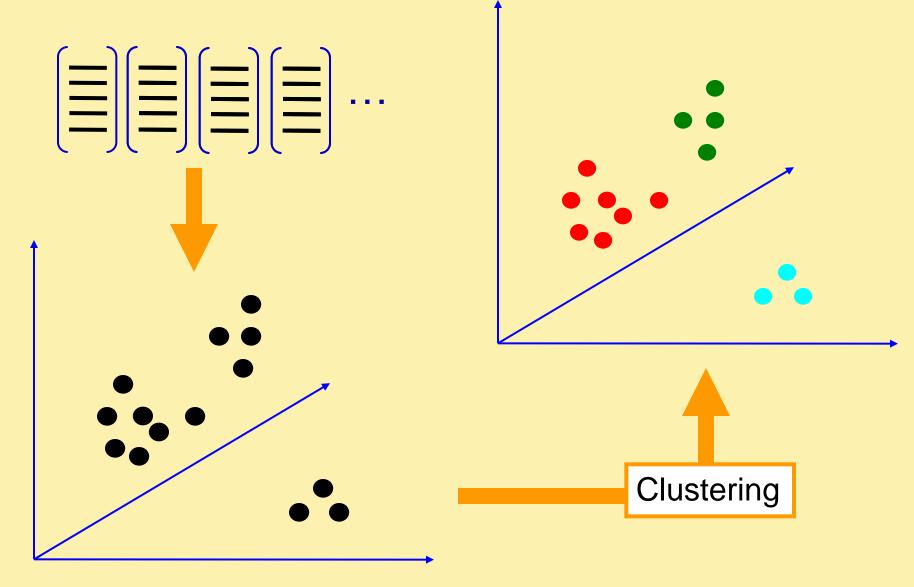




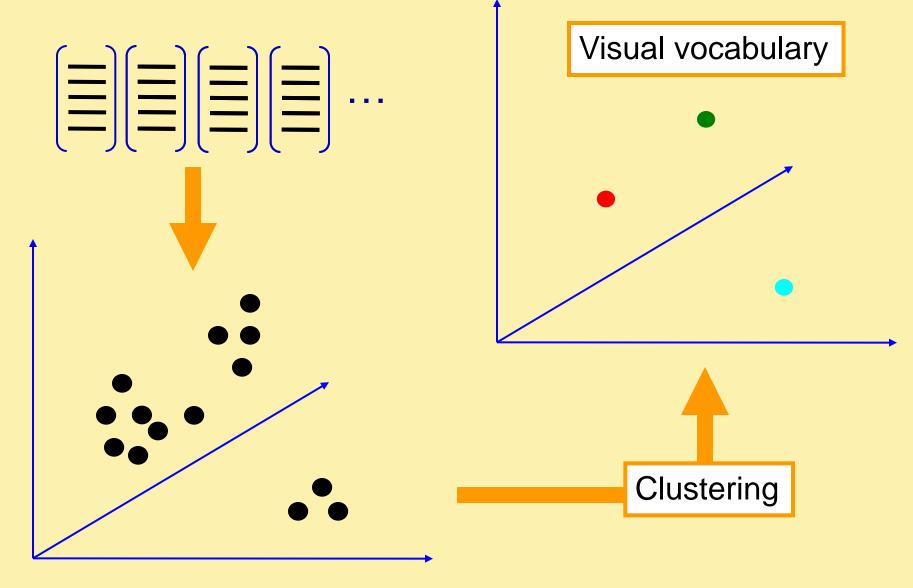
2. Learning the visual vocabulary



2. Learning the visual vocabulary



2. Learning the visual vocabulary



K-means clustering

 Want to minimize sum of squared Euclidean distances between points x_i and their nearest cluster centers m_k

$$D(X,M) = \sum_{i=1}^{k} \sum_{i=1}^{k} (x_i - m_k)^2$$

cluster k point i in cluster k

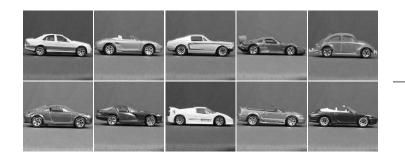
Algorithm:

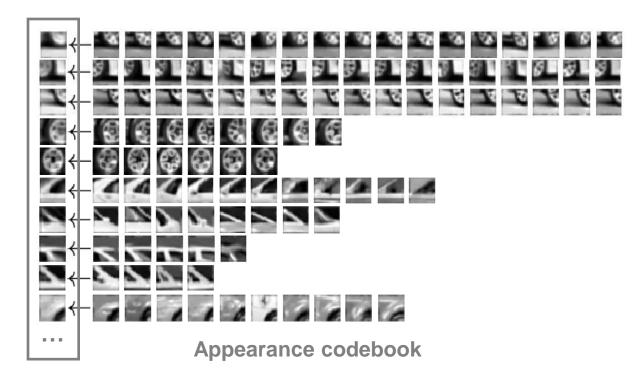
- Randomly initialize K cluster centers
- Iterate until convergence:
 - Assign each data point to the nearest center
 - Recompute each cluster center as the mean of all points assigned to it

Clustering and vector quantization

- Clustering is a common method for learning a visual vocabulary or codebook
 - Unsupervised learning process
 - Each cluster center produced by k-means becomes a codevector
 - Codebook can be learned on separate training set
 - Provided the training set is sufficiently representative, the codebook will be "universal"
- The codebook is used for quantizing features
 - A vector quantizer takes a feature vector and maps it to the index of the nearest codevector in a codebook
 - Codebook = visual vocabulary
 - Codevector = visual word

Example codebook

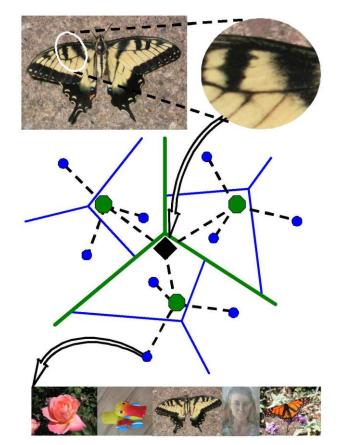




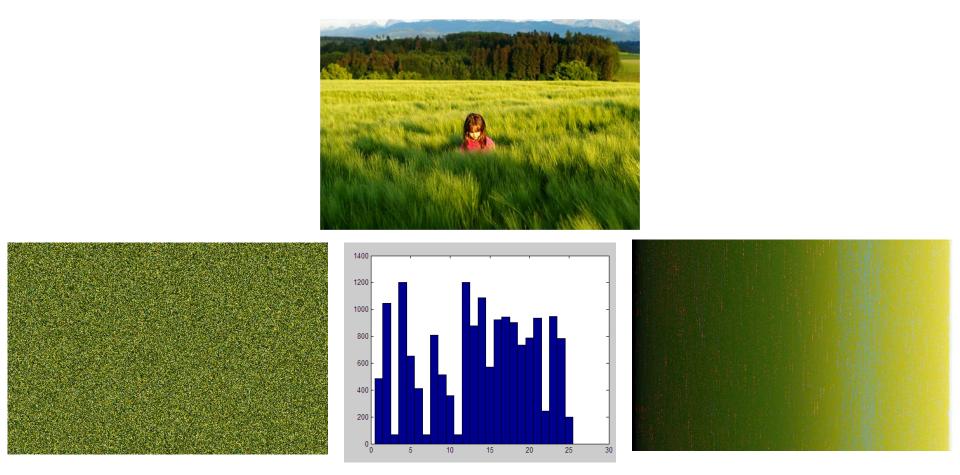
Another codebook

Visual vocabularies: Issues

- How to choose vocabulary size?
 - Too small: visual words not representative of all patches
 - Too large: quantization artifacts, overfitting
- Computational efficiency
 - Vocabulary trees (Nister & Stewenius, 2006)

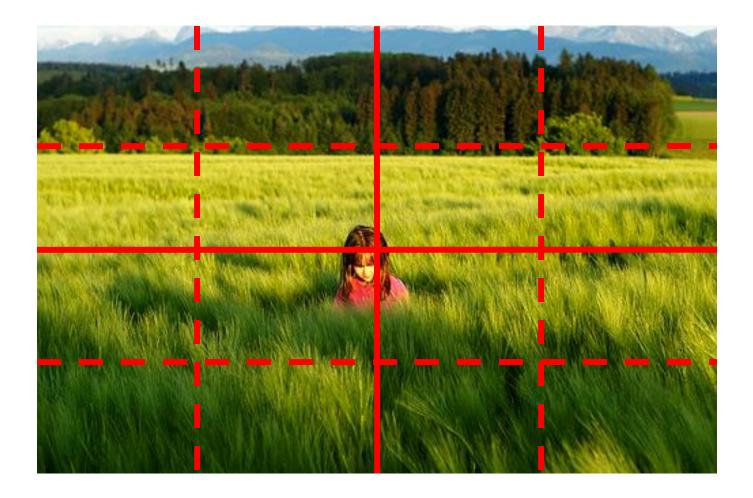


But what about layout?



All of these images have the same color histogram

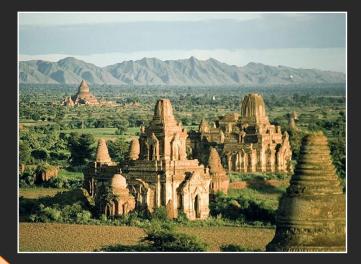
Spatial pyramid

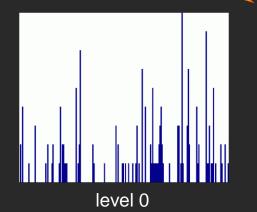


Compute histogram in each spatial bin

Spatial pyramid representation

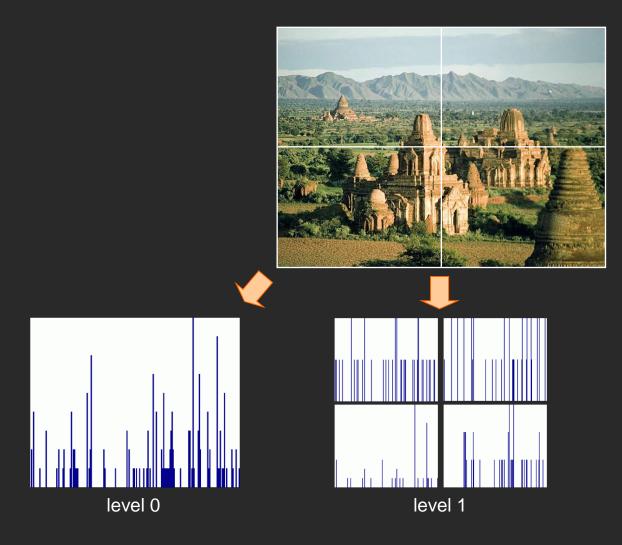
- Extension of a bag of features
- Locally orderless representation at several levels of resolution





Spatial pyramid representation

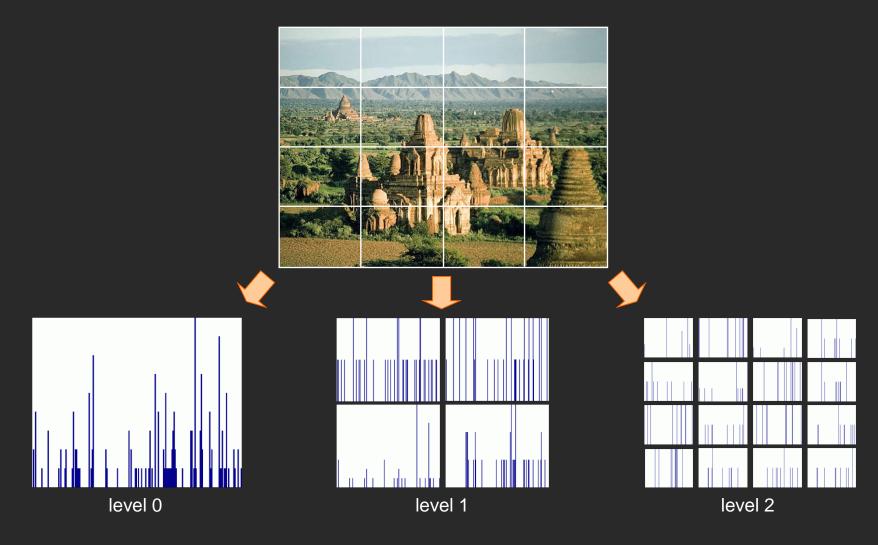
- Extension of a bag of features
- Locally orderless representation at several levels of resolution



Lazebnik, Schmid & Ponce (CVPR 2006)

Spatial pyramid representation

- Extension of a bag of features
- Locally orderless representation at several levels of resolution



Lazebnik, Schmid & Ponce (CVPR 2006)

Scene category dataset



Multi-class classification results (100 training images per class)

	Weak features			Strong features	
	(vocabulary size: 16)		(vocabulary size: 200)		
Level	Single-level	Pyramid	Single-level	Pyramid	
$0(1 \times 1)$	45.3 ± 0.5		72.2 ± 0.6		
$1(2 \times 2)$	53.6 ± 0.3	56.2 ± 0.6	77.9 ± 0.6	79.0 ± 0.5	
$2(4 \times 4)$	61.7 ± 0.6	64.7 ± 0.7	79.4 ± 0.3	81.1 ±0.3	
3 (8 × 8)	63.3 ± 0.8	66.8 ±0.6	77.2 ± 0.4	80.7 ± 0.3	

Caltech101 dataset

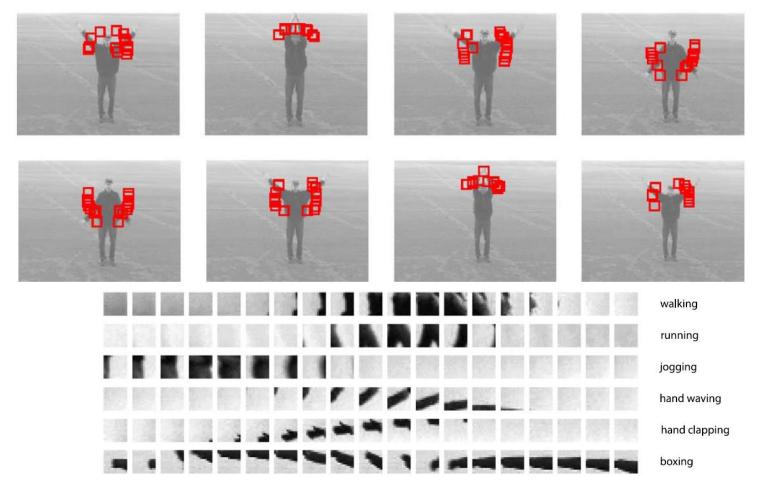
http://www.vision.caltech.edu/Image_Datasets/Caltech101/Caltech101.html

Multi-class classification results (30 training images per class)

	Weak feat	ures (16)	Strong features (200)	
Level	Single-level	Pyramid	Single-level	Pyramid
0	15.5 ± 0.9		41.2 ± 1.2	
$\begin{vmatrix} 1 \end{vmatrix}$	31.4 ± 1.2	32.8 ± 1.3	55.9 ± 0.9	57.0 ± 0.8
2	47.2 ± 1.1	49.3 ± 1.4	63.6 ± 0.9	64.6 ±0.8
3	$52.2\pm\!0.8$	54.0 ± 1.1	60.3 ± 0.9	$64.6\pm\!0.7$

Bags of features for action recognition

Space-time interest points



Juan Carlos Niebles, Hongcheng Wang and Li Fei-Fei, <u>Unsupervised Learning of Human</u> <u>Action Categories Using Spatial-Temporal Words</u>, IJCV 2008.