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Abstract: Emerging theories of compressive sensing, sparse 

representations and dictionaries are enabling new solutions to several 

problems in computer vision and pattern recognition. In this talk, I will 

present examples of compressive acquisition of video sequences, 

sparse representation-based methods for face and iris recognition, 

reconstruction of images and shapes from gradients and dictionary-

based methods for object and activity recognition. 

 

12:00 noon, Friday October 14, 2011, Lubrano Conference room, CIT 

room 477. 



Previous Class 

 

• Overview and history of recognition 

 

 



Specific recognition tasks 

Svetlana Lazebnik 



Scene categorization or classification 

• outdoor/indoor 

• city/forest/factory/etc. 

Svetlana Lazebnik 



Image annotation / tagging / attributes 

• street 

• people 

• building 

• mountain 

• tourism 

• cloudy 

• brick 

• … 

Svetlana Lazebnik 



Object detection 

• find pedestrians 

Svetlana Lazebnik 



Image parsing 

mountain 
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banner 
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people 

street lamp 

sky 

building 

Svetlana Lazebnik 



Today’s class: features and bag of 
words models 

 

• Representation 

– Gist descriptor 

– Image histograms 

– Sift-like features 

• Bag of Words models 

– Encoding methods 
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Derek Hoiem 
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Part 1: Image features 
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Image representations 

 

• Templates 

– Intensity, gradients, etc. 

 

 

• Histograms 

– Color, texture, SIFT descriptors, etc. 

 



Space Shuttle 

Cargo Bay 

Image Representations: Histograms 

Global histogram 
• Represent distribution of features 

– Color, texture, depth, … 

Images from Dave Kauchak 



Image Representations: Histograms 

• Joint histogram 
– Requires lots of data 

– Loss of resolution to  
avoid empty bins 

Images from Dave Kauchak 

Marginal histogram 
• Requires independent features 

• More data/bin than  

joint histogram 

Histogram: Probability or count of data in each bin 



EASE Truss  

Assembly 

Space Shuttle 

Cargo Bay 

Image Representations: Histograms 

Images from Dave Kauchak 

Clustering 

Use the same cluster centers for all images 



Computing histogram distance 

Chi-squared Histogram matching distance 
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Histogram intersection (assuming normalized histograms) 

Cars found by color histogram matching using chi-squared 



Histograms: Implementation issues 

Few Bins 
Need less data 

Coarser representation 

Many Bins 
Need more data 

Finer representation 

• Quantization 
– Grids: fast but applicable only with few dimensions 
– Clustering: slower but can quantize data in higher 

dimensions 

 
 
 
 
 

• Matching 
– Histogram intersection or Euclidean may be faster 
– Chi-squared often works better 
– Earth mover’s distance is good for when nearby bins 

represent similar values 



What kind of things do we compute 
histograms of? 

 

• Color 

 

 

 

 

 

 

• Texture (filter banks or HOG over regions) 

L*a*b* color space  HSV color space  



What kind of things do we compute 
histograms of? 
• Histograms of oriented gradients 

 

 

 

 

 

 

SIFT – Lowe IJCV 2004 



SIFT vector formation 
• Computed on rotated and scaled version of window 

according to computed orientation & scale 

– resample the window 

• Based on gradients weighted by a Gaussian of 

variance half the window (for smooth falloff) 



SIFT vector formation 
• 4x4 array of gradient orientation histograms 

– not really histogram, weighted by magnitude 

• 8 orientations x 4x4 array = 128 dimensions 

• Motivation:  some sensitivity to spatial layout, but not 

too much. 

showing only 2x2 here but is 4x4 



Ensure smoothness 

• Gaussian weight  

• Trilinear interpolation  

– a given gradient contributes to 8 bins:  

4 in space times 2 in orientation 



Reduce effect of illumination 
• 128-dim vector normalized to 1  

• Threshold gradient magnitudes to avoid excessive 

influence of high gradients 

– after normalization, clamp gradients >0.2 

– renormalize 



 

Local Descriptors: Shape Context 

Count the number of points 

inside each bin, e.g.: 

Count = 4 

Count = 10 
... 

Log-polar binning: more 

precision for nearby points, 

more flexibility for farther 

points. 

Belongie & Malik, ICCV 2001 
K. Grauman, B. Leibe 



Shape Context Descriptor 

 



Local Descriptors: Geometric Blur 

Example descriptor 

~ 

Compute 

edges at four 

orientations 

Extract a patch 

in each channel 

Apply spatially varying 

blur and sub-sample  

(Idealized signal) 

Berg & Malik, CVPR 2001 
K. Grauman, B. Leibe 



Self-similarity Descriptor 

Matching Local Self-Similarities across Images 
and Videos, Shechtman and Irani, 2007 



Self-similarity Descriptor 

Matching Local Self-Similarities across Images 
and Videos, Shechtman and Irani, 2007 



Self-similarity Descriptor 

Matching Local Self-Similarities across Images 
and Videos, Shechtman and Irani, 2007 



Learning Local Image Descriptors, Winder 
and Brown, 2007 



Right features depend on what you want to 
know 
• Shape: scene-scale, object-scale, detail-scale 

– 2D form, shading, shadows, texture, linear 
perspective 

• Material properties: albedo, feel, hardness, … 
– Color, texture 

• Motion 
– Optical flow, tracked points 

• Distance 
– Stereo, position, occlusion, scene shape 

– If known object: size, other objects 

 

 

 



Things to remember about representation 

 

• Most features can be thought of as templates, 
histograms (counts), or combinations 

 

• Think about the right features for the problem 

– Coverage 

– Concision 

– Directness 

 

 



Bag-of-features models 

Svetlana Lazebnik 



Origin 1: Texture recognition 

• Texture is characterized by the repetition of basic elements 

or textons 

• For stochastic textures, it is the identity of the textons, not 

their spatial arrangement, that matters 

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; 

Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003 



Origin 1: Texture recognition 

Universal texton dictionary 

histogram 

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; 

Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003 



Origin 2: Bag-of-words models 

• Orderless document representation: frequencies of words 

from a dictionary  Salton & McGill (1983) 



Origin 2: Bag-of-words models 

US Presidential Speeches Tag Cloud 
http://chir.ag/phernalia/preztags/ 

• Orderless document representation: frequencies of words 

from a dictionary  Salton & McGill (1983) 



Origin 2: Bag-of-words models 

US Presidential Speeches Tag Cloud 
http://chir.ag/phernalia/preztags/ 
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from a dictionary  Salton & McGill (1983) 



Origin 2: Bag-of-words models 

US Presidential Speeches Tag Cloud 
http://chir.ag/phernalia/preztags/ 

• Orderless document representation: frequencies of words 

from a dictionary  Salton & McGill (1983) 



1. Extract features 

2. Learn “visual vocabulary” 

3. Quantize features using visual vocabulary  

4. Represent images by frequencies of “visual words”  

Bag-of-features steps 



1. Feature extraction 

• Regular grid or interest regions 



Normalize 

patch 

Detect patches 

Compute 

descriptor 

Slide credit: Josef Sivic 

1. Feature extraction 



… 

1. Feature extraction 

Slide credit: Josef Sivic 



2. Learning the visual vocabulary 

… 

Slide credit: Josef Sivic 



2. Learning the visual vocabulary 

Clustering 

… 

Slide credit: Josef Sivic 



2. Learning the visual vocabulary 

Clustering 

… 

Slide credit: Josef Sivic 

Visual vocabulary 



K-means clustering 

• Want to minimize sum of squared Euclidean 

distances between points xi and their 

nearest cluster centers mk 

 

 

 

Algorithm: 

• Randomly initialize K cluster centers 

• Iterate until convergence: 
• Assign each data point to the nearest center 

• Recompute each cluster center as the mean of all points 

assigned to it 
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Clustering and vector quantization 

• Clustering is a common method for learning a 

visual vocabulary or codebook 
• Unsupervised learning process 

• Each cluster center produced by k-means becomes a 

codevector 

• Codebook can be learned on separate training set 

• Provided the training set is sufficiently representative, the 

codebook will be “universal” 

 

• The codebook is used for quantizing features 
• A vector quantizer takes a feature vector and maps it to the 

index of the nearest codevector in a codebook 

• Codebook = visual vocabulary 

• Codevector = visual word 

 



Example codebook 

… 

Source: B. Leibe 

Appearance codebook 



Another codebook 

Appearance codebook 
… 

… 

… 
… 

… 

Source: B. Leibe 



Visual vocabularies: Issues 

• How to choose vocabulary size? 
• Too small: visual words not representative of all patches 

• Too large: quantization artifacts, overfitting 

• Computational efficiency 
• Vocabulary trees  

(Nister & Stewenius, 2006) 



But what about layout? 

All of these images have the same color histogram 



Spatial pyramid 

Compute histogram in each spatial bin 



Spatial pyramid representation 

• Extension of a bag of features 

• Locally orderless representation at several levels of resolution 

level 0 

Lazebnik, Schmid & Ponce (CVPR 2006) 



Spatial pyramid representation 

• Extension of a bag of features 

• Locally orderless representation at several levels of resolution 

level 0 level 1 

Lazebnik, Schmid & Ponce (CVPR 2006) 



Spatial pyramid representation 

level 0 level 1 level 2 

• Extension of a bag of features 

• Locally orderless representation at several levels of resolution 

Lazebnik, Schmid & Ponce (CVPR 2006) 



Scene category dataset 

Multi-class classification results 

(100 training images per class) 



Caltech101 dataset 
http://www.vision.caltech.edu/Image_Datasets/Caltech101/Caltech101.html 

Multi-class classification results (30 training images per class) 



Bags of features for action recognition 

Juan Carlos Niebles, Hongcheng Wang and Li Fei-Fei, Unsupervised Learning of Human 

Action Categories Using Spatial-Temporal Words, IJCV 2008. 

Space-time interest points 

http://vision.stanford.edu/niebles/humanactions.htm
http://vision.stanford.edu/niebles/humanactions.htm
http://vision.stanford.edu/niebles/humanactions.htm
http://vision.stanford.edu/niebles/humanactions.htm

