- Project 4
- MLDemos <u>http://mldemos.epfl.ch/</u>
- Spring 2012: CS 2951-B, Data-Driven Vision and Graphics, 11-12, CIT 345

11/02/11

Context and Spatial Layout

Computer Vision CS 143, Brown

James Hays

Many Slides from Derek Hoiem and Antonio Torralba

Context in Recognition

 Objects usually are surrounded by a scene that can provide context in the form of nearby objects, surfaces, scene category, geometry, etc.

Context provides clues for function

• What is this?

These examples from Antonio Torralba

Context provides clues for function

• What is this?

• Now can you tell?

Sometimes context is *the* major component of recognition

• What is this?

Sometimes context is *the* major component of recognition

• What is this?

• Now can you tell?

More Low-Res

• What are these blobs?

More Low-Res

• The same pixels! (a car)

The Context Challenge

http://web.mit.edu/torralba/www/carsAndFacesInContext.html

No local face detector! Just context from Scene Statistics

There are many types of context

• Local pixels

- window, surround, image neighborhood, object boundary/shape, global image statistics
- 2D Scene Gist
 - global image statistics
- 3D Geometric
 - 3D scene layout, support surface, surface orientations, occlusions, contact points, etc.
- Semantic
 - event/activity depicted, scene category, objects present in the scene and their spatial extents, keywords

Photogrammetric

- camera height orientation, focal length, lens distortion, radiometric, response function
- Illumination
 - sun direction, sky color, cloud cover, shadow contrast, etc.
- Geographic
 - GPS location, terrain type, land use category, elevation, population density, etc.
- Temporal
 - nearby frames of video, photos taken at similar times, videos of similar scenes, time of capture
- Cultural
 - photographer bias, dataset selection bias, visual cliches, etc.

from Divvala et al. CVPR 2009

Cultural context

Jason Salavon: http://salavon.com/SpecialMoments/Newlyweds.shtml

Cultural context

Who is Mildred? Who is Lisa?

Andrew Gallagher: http://chenlab.ece.cornell.edu/people/Andy/projectpage_names.html

Cultural context

Andrew Gallagher: http://chenlab.ece.cornell.edu/people/Andy/projectpage_names.html

1. Context for recognition

1. Context for recognition

- 1. Context for recognition
- 2. Scene understanding

- 1. Context for recognition
- 2. Scene understanding
- 3. Many direct applications
 - a) Assisted driving
 - b) Robot navigation/interaction
 - c) 2D to 3D conversion for 3D TV
 - d) Object insertion

3D Reconstruction: Input, Mesh, Novel View

Robot Navigation: Path Planning

Spatial Layout: 2D vs. 3D

Context in Image Space

[Torralba Murphy Freeman 2004]

[He Zemel Cerreira-Perpiñán 2004]

But object relations are in 3D...

How to represent scene space?

Wide variety of possible representations

Scene-Level Geometric Description

a) Gist, Spatial Envelope

b) Stages

Figs from Hoiem/Savarese Draft

Retinotopic Maps

c) Geometric Context

d) Depth Maps

Figs from Hoiem/Savarese Draft

Highly Structured 3D Models

e) Ground Plane

f) Ground Plane with Billboards

g) Ground Plane with Walls

h) Blocks World

Figs from Hoiem/Savarese Draft

Key Trade-offs

- Level of detail: rough "gist", or detailed point cloud?
 - Precision vs. accuracy
 - Difficulty of inference
- Abstraction: depth at each pixel, or ground planes and walls?
 - What is it for: e.g., metric reconstruction vs. navigation

Low detail, Low abstraction

Holistic Scene Space: "Gist"

Torralba & Oliva 2002

High detail, Low abstraction

Depth Map

Saxena, Chung & Ng 2005, 2007

Medium detail, High abstraction

Room as a Box

Hedau Hoiem Forsyth 2009

A few examples of spatial layout estimation

• Surface layout

• The room as a box

• Depth estimation

Surface Layout: describe 3D surfaces with geometric classes

Geometry estimation as recognition

Use a variety of image cues

Vanishing points, lines

Color, texture, image location

Texture gradie®tide: Derek Hoiem

Surface Layout Algorithm

Hoiem Efros Hebert (2007)

Surface Layout Algorithm

Surface Description Result

Automatic Photo Popup

Labeled Image

Fit Ground-Vertical Boundary with Line Segments Form Segments into Polylines

Cut and Fold

Final Pop-up Model

[Hoiem Efros Hebert 2005]

Automatic Photo Pop-up

What about more organized but complex spaces?

Other excellent works include: Saxena Sun Ng (2009) Lee Kanade Hebert (2009) Gupta Efros Hebert (2010)

The room as a box

Hedau Hoiem Forsyth (2009)

Recovering the box layout

Vertical VP

Detected Edges + Vanishing Points Surface Label Confidences

Most Likely Geometry

Hypothesized Boxes

Estimate room's physical space from one image

Estimated "Box" Geometry + Object Pixels

3D Reconstruction + Estimated Occupied Volume

Detecting 3D bed positions in an image

2D Bed Detection

3D Bed Detection with Scene Geometry

Hedau Hoiem Forsyth (2010)

Searching for beds in room coordinates

Recover Room Coordinates

Rectify Features to Room Coordinates

Rectified Sliding Windows

3D bed detection from an image

Reason about 3D room and bed space

Joint Inference with Priors

- Beds close to walls
- Beds within room
- Consistent bed/wall size
- Two objects cannot occupy the same space

Hedau Hoiem Forsyth (2010)

Depth Estimates from an Image

Saxena et al. 2005, 2008

Depth from Image: approach

- 1. Divide image into superpixels
- 2. Compute features for each superpixel
 - Position, color, texture, shape
- 3. Predict 3D plane parameters for each superpixel using features
- 4. Estimate confidence in prediction using features
- 5. Global inference, incorporating constraints of connected structure, co-planarity, co-linearity

Saxena et al. 2008

Depth Estimates from an Image

Saxena et al. 2005, 2008

Depth Estimates from an Image

Saxena et al. 2008

Depth from Image: Reconstructions

Input

Novel View

Saxena et al. 2008

Depth from Image

 Demo and publications: <u>http://make3d.cs.cornell.edu/</u>

• Autonomous driving (Michels Saxena Ng 2005)

What if we had trustworthy (although coarse) geometry information?

- Rendering Synthetic Objects into Legacy Photographs. Kevin Karsch, Varsha Hedau, David Forsyth, Derek Hoiem. SIGGRAPH Asia 2011
- Project page: <u>http://kevinkarsch.com/publications/sa11.html</u>
- Video

Things to remember

 Objects should be interpreted in the context of the surrounding scene

Many types of context to consider

• Spatial layout is an important part of scene interpretation, but many open problems

– How to represent space?

- How to learn and infer spatial models?
- Consider trade-offs of detail vs. accuracy and abstraction vs. quantification