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This class: structure from motion 

 

• Recap of epipolar geometry 

– Depth from two views 

 

• Affine structure from motion 



Recap: Epipoles 

C

• Point x in left image corresponds to epipolar line l’ in right 
image 

• Epipolar line passes through the epipole (the intersection of 
the cameras’ baseline with the image plane 

C



Recap: Fundamental Matrix 

• Fundamental matrix maps from a point in one 
image to a line in the other 

 

• If x and x’ correspond to the same 3d point X: 



Structure from motion 

• Given a set of corresponding points in two or more 

images, compute the camera parameters and the 3D point 

coordinates 

Camera 1 
Camera 2 Camera 3 

R1,t1 R2,t2 
R3,t3 

? ? ? Slide credit: 
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Structure from motion ambiguity 

• If we scale the entire scene by some factor k and, at 

the same time, scale the camera matrices by the 

factor of 1/k, the projections of the scene points in the 

image remain exactly the same: 

It is impossible to recover the absolute scale of the scene! 
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How do we know the scale of image content? 







Structure from motion ambiguity 

• If we scale the entire scene by some factor k and, at 

the same time, scale the camera matrices by the 

factor of 1/k, the projections of the scene points in the 

image remain exactly the same  

 

• More generally: if we transform the scene using a 

transformation Q and apply the inverse 

transformation to the camera matrices, then the 

images do not change 
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Projective structure from motion 

• Given: m images of n fixed 3D points  
 

• xij = Pi Xj ,  i = 1,… , m,    j = 1, … , n   
 

• Problem: estimate m projection matrices Pi and n 3D points 
Xj from the mn corresponding points xij 

 

x1j 

x2j 

x3j 

Xj 

P1 

P2 

P3 

Slides from Lana Lazebnik  



Projective structure from motion 
• Given: m images of n fixed 3D points  

 

• xij = Pi Xj ,  i = 1,… , m,    j = 1, … , n   
 

• Problem: estimate m projection matrices Pi 
and n 3D points Xj from the mn corresponding 
points xij 

• With no calibration info, cameras and points 
can only be recovered up to a 4x4 projective 
transformation Q: 

• X → QX, P → PQ-1 
• We can solve for structure and motion when  

• 2mn >= 11m +3n – 15 
• For two cameras, at least 7 points are needed 

 



Types of ambiguity 

vTv
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Affine 
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Similarity 
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Euclidean 
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Preserves intersection and 
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Preserves parallellism, 
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Preserves angles, ratios of 
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• With no constraints on the camera calibration matrix or on the 
scene, we get a projective reconstruction 

• Need additional information to upgrade the reconstruction to 
affine, similarity, or Euclidean 



Projective ambiguity 
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Projective ambiguity 



Affine ambiguity 
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Affine ambiguity 



Similarity ambiguity 
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Similarity ambiguity 



Bundle adjustment 

• Non-linear method for refining structure and motion 

• Minimizing reprojection error 
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Photo synth 

Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Exploring 

photo collections in 3D," SIGGRAPH 2006 

http://photosynth.net/ 

http://phototour.cs.washington.edu/Photo_Tourism.pdf
http://phototour.cs.washington.edu/Photo_Tourism.pdf
http://photosynth.net/


Structure from motion under orthographic projection 

3D Reconstruction of a Rotating Ping-Pong Ball 

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:  

A factorization method. IJCV, 9(2):137-154, November 1992.  

•Reasonable choice when  
•Change in depth of points in scene is much smaller than distance to camera 
•Cameras do not move towards or away from the scene   

 

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf


Structure from motion 

• Let’s start with affine cameras (the math is easier) 

center at 

infinity 



Affine projection for rotated/translated 
camera 

x 

X 
a1 

a2 



Affine structure from motion 
 

• Affine projection is a linear mapping + translation in 
inhomogeneous coordinates 

 

 

 

 

 

 

1. We are given corresponding 2D points (x) in several frames 

2. We want to estimate the 3D points (X) and the affine 
parameters of each camera (A) 
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Affine structure from motion 

• Centering: subtract the centroid of the image points 

 

 

 

 

 

 

• For simplicity, assume that the origin of the world 

coordinate system is at the centroid of the 3D points 

• After centering, each normalized point xij is related to 

the 3D point Xi by 
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Suppose we know 3D points and affine 
camera parameters … 

 then, we can compute the observed 2d 
positions of each point 
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Camera Parameters (2mx3) 

3D Points (3xn) 

2D Image Points (2mxn) 



What if we instead observe corresponding 
2d image points? 
 

Can we recover the camera parameters and 3d 
points? 

cameras (2 m) 

points (n) 

n

mmnmm

n

n

XXX

A

A

A

xxx

xxx

xxx

D 










21

2

1

21

22221

11211

?

ˆˆˆ

ˆˆˆ

ˆˆˆ

What rank is the matrix of 2D points? 



Factorizing the measurement matrix 

Source: M. Hebert 

AX 



Factorizing the measurement matrix 

Source: M. Hebert 

• Singular value decomposition of D: 



Factorizing the measurement matrix 

Source: M. Hebert 

• Singular value decomposition of D: 



Factorizing the measurement matrix 

Source: M. Hebert 

• Obtaining a factorization from SVD: 



Factorizing the measurement matrix 

• Obtaining a factorization from SVD: 

Source: M. Hebert 

This decomposition minimizes 

|D-MS|2 



Affine ambiguity 

• The decomposition is not unique. We get the 
same D by using any 3 3 matrix C and applying 
the transformations A → AC, X →C-1X 

• That is because we have only an affine 
transformation and we have not enforced any 
Euclidean constraints (like forcing the image 
axes to be perpendicular, for example) 

Source: M. Hebert 
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• Orthographic: image axes are perpendicular and 
scale is 1 
 
 
 
 
 
 
 
 

• This translates into 3m equations in L = CCT : 

Ai L Ai
T = Id,   i = 1, …, m 

 
• Solve for L 

• Recover C from L by Cholesky decomposition: L = CCT 

• Update M and S:  M = MC, S = C-1S 

Eliminating the affine ambiguity 

x 

X a1 

a2 

a1 · a2 = 0 

|a1|
2 = |a2|

2
 = 1 

Source: M. Hebert 



Algorithm summary 
• Given: m images and n tracked features xij 

• For each image i, center the feature coordinates 
• Construct a 2m  n measurement matrix D: 

– Column j contains the projection of point j in all views 
– Row i contains one coordinate of the projections of all 

the n points in image i 

• Factorize D: 
– Compute SVD: D = U W VT 

– Create U3 by taking the first 3 columns of U 
– Create V3 by taking the first 3 columns of V 
– Create W3 by taking the upper left 3  3 block of W 

• Create the motion (affine) and shape (3D) matrices: 
 A = U3W3

½  and X = W3
½ V3

T 

• Eliminate affine ambiguity 

Source: M. Hebert 



Dealing with missing data 

• So far, we have assumed that all points are 
visible in all views 

• In reality, the measurement matrix typically 
looks something like this: 

 

 

 
 
 
One solution: 
– solve using a dense submatrix of visible points 

– Iteratively add new cameras 

cameras 

points 



A nice short explanation 

• Class notes from Lischinksi and Gruber 

 http://www.cs.huji.ac.il/~csip/sfm.pdf 

http://www.cs.huji.ac.il/~csip/sfm.pdf


Reconstruction results (project 5) 

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:  

A factorization method. IJCV, 9(2):137-154, November 1992.  

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf


Project 5 

1. Detect interest points (e.g., Harris) 
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Project 5 

2.  Correspondence via Lucas-Kanade tracking 

a) Initialize (x’,y’) = (x,y) 

b) Compute (u,v) by 

 

 

 

 

c) Shift window by (u, v): x’=x’+u; y’=y’+v; 

d) (extra credit) Recalculate It 

e) (extra credit) Repeat steps 2-4 until small change 

• Use interpolation for subpixel values 

 

2nd moment matrix for feature 

patch in first image 
displacement 

It = I(x’, y’, t+1) - I(x, y, t)  

Original (x,y) position 



Project 5 

3.  Get Affine camera matrix and 3D points using 
Tomasi-Kanade factorization 

Solve for 

orthographic 

constraints  



Project 5 

• Tips 
– Helpful matlab functions: interp2, meshgrid, ordfilt2 (for getting local 

maximum), svd, chol 

– When selecting interest points, must choose appropriate threshold on 
Harris criteria or the smaller eigenvalue, or choose top N points 

– Vectorize to make tracking fast (interp2 will be the bottleneck) 

– Get tracking working on one point for a few frames before trying to 
get it working for all points 

 


