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Spring 2012 Course

ENGN2520
Pattern Recognition and Machine Learning

Meeting: Tue/Thu 2:30-3:50
Instructor: Pedro Felzenszwalb

\We will consider applications in computer vision, signal processing, 
speech recognition and information retrieval. 

Topics include: decision theory, parametric and non-parametric 
learning, dimensionality reduction, graphical models, exact and 
approximate inference, semi-supervised learning, generalization 
bounds and support vector machines.

Prerequisites: basic probability, linear algebra, calculus and some 
programming experience. 

Monday, December 5, 11



Object category detection
Goal: detect all pedestrians, cars, trees, squirrels, ...
Object category detection in computer vision

Goal: detect all pedestrians, cars, monkeys, etc in image
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Why is it hard?

• Objects in a category have highly variable appearance

- Photometric variation

- Viewpoint variation

- Intra-class variability 

- Cars come in a variety of shapes (sedan, minivan, etc)

- People wear different clothes and take different poses
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PASCAL Challenge

• Objects from 20 categories 

- person, car, bicycle, bus, airplane, sheep, cow, table, ...

• Objects are annotated with bounding boxes
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Starting point: sliding window classifiers

Feature vector 
x = [... , ... , ... , ... ]

• Detect objects by testing each subwindow 

- Reduces object detection to binary classification

- Dalal & Triggs: HOG features + linear SVM
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Histogram of Gradient (HOG) features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

Monday, December 5, 11



HOG Filters

• HOG filter is a template for HOG features

• Score is dot product of filter and feature vector

Image pyramid HOG feature pyramid

HOG pyramid H

Score of F at position p is 
F ⋅ φ(p, H)

filter F

φ(p, H) = HOG features in 
subwindow specified by p

p
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Dalal & Triggs: HOG + linear SVMs

Typical form of 
a model

φ(p, H)

φ(q, H)

There is much more background than objects
Start with random negatives and repeat:
  1) Train a model
  2) Harvest false positives to define “hard negatives”
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Deformable part models

• Collection of templates arranged in a deformable configuration

• Each model has global template + part templates

• Fully trained from bounding boxes alone
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2 component bicycle model

root filters
coarse resolution

part filters
finer resolution

deformation
models

Each component has a root filter F0 
and n part models (Fi, vi, di)
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Object hypothesis

Image pyramid HOG feature pyramid

Multiscale model captures features at two-resolutions

Score is sum of filter 
scores minus 

deformation costs

p0 : location of root
p1,..., pn : location of parts

z = (p0,..., pn)
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filters deformation parameters

displacements
score(p0, . . . , pn) =

n�

i=0

Fi · �(H, pi)�
n�

i=1

di · (dx2
i , dy2

i )

concatenation of HOG 
features and part 

displacement features

concatenation filters and 
deformation parameters

score(z) = � · �(H, z)

Score of a hypothesis

“data term” “spatial prior”
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Matching
• Define an overall score for each root location

- Based on best placement of parts

• High scoring root locations define detections

- “sliding window approach”

• Efficient computation 

- Dynamic Programming

- Generalized distance transforms (max-convolution)

score(p0) = max
p1,...,pn

score(p0, . . . , pn).

For each part, pick location with high score 
near ideal location relative to root
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head filter

Dl(x, y) = max
dx,dy

�
Rl(x + dx, y + dy)� di · (dx2, dy2)

⇥
Transformed response

max-convolution, computed in linear time
(spreading, local max, etc)

input image

Response of filter in l-th pyramid level

Rl(x, y) = F · �(H, (x, y, l))

cross-correlation
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xx
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...

model

response of root filter

transformed responses

response of part filters

feature map feature map at twice the resolution

combined score of 

root locations

color encoding of filter 

response values
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Matching results

(after non-maximum suppression)

~1 second to search all scales on a multi-core computer
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Learning
• Training data: images with bounding boxes

• Need to learn the model structure, filters and deformation costs

Training
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Latent SVM

LD(�) =
1
2

||�||2 + C
n�

i=1

max(0, 1� yif�(xi))

Minimize

D = (�x1, y1⇥, . . . , �xn, yn⇥)Training data yi ⇥ {�1, 1}

We would like to find β such that: yif�(xi) > 0

Classifiers that score an example x using

β are model parameters
z are latent values

f�(x) = max
z�Z(x)

� · �(x, z)
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Semi-convexity

• Maximum of convex functions is convex                        

•                                           is convex in β

•                                    is convex for negative examplesmax(0, 1� yif�(xi))

f�(x) = max
z�Z(x)

� · �(x, z)

LD(�) =
1
2

||�||2 + C
n�

i=1

max(0, 1� yif�(xi))

Convex if latent values for positive examples are fixed
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Latent SVM training

• Convex if we fix z for positive examples

• Optimization:

- Initialize β and iterate:

- Pick best z for each positive example

- Optimize β via gradient descent with data-mining

LD(�) =
1
2

||�||2 + C
n�

i=1

max(0, 1� yif�(xi))

f�(x) = max
z�Z(x)

� · �(x, z)
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Learning models from bounding boxes

• Reduce to Latent SVM training problem

• Positive example: some z should have high score

• Bounding box defines range of root locations

- Parts can be anywhere

- This defines Z(x)

f�(x) = max
z�Z(x)

� · �(x, z)
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Background

• Negative example specifies no z should have high score

• One negative example per root location in a “background” image

- Huge number of negative examples

- Consistent with requiring low false-positive rate

f�(x) = max
z�Z(x)

� · �(x, z)
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• Sequence of training rounds

- Separate examples based on bounding box aspect ratio (“pose”)

- Train multiple root filters

- Initialize parts from root

- Merge into a mixture

- Train final model 
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6 component car model

root filters
coarse resolution

part filters
finer resolution

deformation
models

2 of 3 symmetric pairs shown
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6 component person model
1 component from of each symmetric pair
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Bottle

Cat
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Car detections

high scoring false positiveshigh scoring true positives
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Person detections

high scoring true positives
high scoring false positives 

(not enough overlap)
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Horse detections

high scoring true positives high scoring false positives
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Cat detections

high scoring true positives high scoring false positives 
(not enough overlap)
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Precision/Recall results on Cars 2010
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Precision/Recall results on Plants 2010
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Comparison of Car models
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1 Root (0.48)
2 Root (0.58)
1 Root+Parts (0.55)
2 Root+Parts (0.62)
2 Root+Parts+BB (0.64)
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