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A Sequential Factorization Method
for Recovering Shape and Motion

From Image Streams
Toshihiko Morita and Takeo Kanade, Fellow, IEEE

Abstract —We present a sequential factorization method for recovering the three-dimensional shape of an object and the motion of
the camera from a sequence of images, using tracked features. The factorization method originally proposed by Tomasi and Kanade
produces robust and accurate results incorporating the singular value decomposition. However, it is still difficult to apply the method
to real-time applications, since it is based on a batch-type operation and the cost of the singular value decomposition is large. We
develop the factorization method into a sequential method by regarding the feature positions as a vector time series. The new
method produces estimates of shape and motion at each frame. The singular value decomposition is replaced with an updating

computation of only three dominant eigenvectors, which can be performed in O P( )
2

 time, while the complete singular value

decomposition requires O FP( )
2

 operations for an F P¥  matrix. Also, the method is able to handle infinite sequences, since it does
not store any increasingly large matrices. Experiments using synthetic and real images illustrate that the method has nearly the
same accuracy and robustness as the original method.

Index Terms —Shape from motion, singular value decomposition, feature tracking, 3D object reconstruction, image understanding,
real-time vision.

——————————   ✦   ——————————

1 INTRODUCTION

ECOVERING both the 3D shape of an object and the
motion of the camera simultaneously from a stream of

images is an important task and has wide applicability in
many tasks, such as navigation and robot manipulation.
Tomasi and Kanade [1] first developed a factorization
method to recover shape and motion under an ortho-
graphic projection model, and obtained robust and accurate
results. Poelman and Kanade [2] have extended the fac-
torization method to scaled-orthographic projection and
paraperspective projection. This method closely approxi-
mates perspective projection in most practical situations so
that it can deal with image sequences which contain per-
spective distortions.

Although the factorization method is a useful technique,
its applicability is, so far, limited to off-line computations
for the following reasons. First, the method is based on a
batch-type computation; that is, it recovers shape and mo-
tion after all the input images are given. Second, the singu-
lar value decomposition, which is the most important pro-
cedure in the method, requires O FP( )2  operations for P
features in F frames. Finally, it needs to store a large meas-
urement matrix whose size increases with the number of
frames. These drawbacks make it difficult to apply the fac-
torization method to real-time applications.

This report presents a sequential factorization method
that considers the input to the system as a vector time series
of feature positions. The method produces estimates of
shape and motion at each input frame. A covariance-like
matrix is stored, instead of feature positions, and its size re-
mains constant as the number of frames increases. The sin-
gular value decomposition is replaced with a computation,
updating only three dominant eigenvectors, which can be
performed in O P( )2  time. Consequently, the method be-
comes recursive.

We first briefly review the factorization method by Tomasi
and Kanade. We then present our sequential factorization
method in Section 3. The algorithm's performance is tested
using synthetic data and real images in Section 4.

2 THEORY OF THE FACTORIZATION METHOD:
REVIEW

2.1 Formalization
The input to the factorization method is a measurement
matrix W, representing image positions of tracked features
over multiple frames. Assuming that there are P features

over F frames, and letting x yfp fp,e j  be the image position of

feature p at frame f, W is a 2F � P matrix, such that
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Each column of W contains all the observations for a sin-
gle point, while each row contains all the observed x-
coordinates or y-coordinates for a single frame.

Suppose that the camera orientation at frame f is rep-
resented by orthonormal vectors i f , j f , and kf , where i f

corresponds to the x-axis of the image plane, and j f  to the

y-axis. The vectors i f  and j f  are collected over F frames

into a motion matrix M R FŒ ¥2 3  such that
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Let sp  be the location of feature p in a fixed world coordi-
nate system, whose origin is set at the center-of-mass of all
the feature points. These vectors are then collected into a
shape matrix S R PŒ ¥3 , such that

S P= s s1 K .                                      (3)

Note that

sp
p

P

=
=

Â 0
1

.                                       (4)

With this notation, the following equation holds by as-
suming an orthographic projection.

W   MS                                           (5)

Tomasi and Kanade [1] pointed out the simple fact that
the rank of W is at most three, since it is the product of the
2 3F ¥  motion matrix M and the 3 ¥ P  shape matrix S. Based
on this rank theory, they developed a factorization method
that robustly recovers the matrices M and S from W.

2.2 Subspace Computation
The actual procedure of the factorization method consists of
two steps. First, the measurement matrix is factorized into
two matrices of rank three using the singular value decom-
position. Assume, without loss of generality, that 2F P≥ .
By computing the singular value decomposition of
W R F PŒ ¥2 , we can obtain orthogonal matrices U R FŒ ¥2 3 ,
and V RPŒ ¥3  such that

W U VT= Â ,                                      (6)

where Â = diag s s s1 2 3, ,c h and s s s1 2 3 0≥ ≥ > . In real-
ity, the rank of W is not exactly three, but approximately
three. U is made from the first three columns of the left sin-
gular matrix of W. Likewise, Â  consists of the first three
singular values, and V is made from the first three columns
of the right singular matrix. By setting

$ $M U S VT= = Âand                              (7)

we can factorize W into

W MS= $ $ ,                                        (8)

where the product $ $MS is the best possible rank three ap-
proximation to W.

It is well known that the left singular vectors U span the
column space of W, while the right singular vectors V span
its row space. The span of U, namely motion space, deter-
mines the motion, and the span of V, namely shape space,
determines the shape. The rank theory claims that the di-
mension of each subspace is at most three, and the first step
of the factorization method finds those subspaces in the
high dimensional input spaces. Both spaces are said to be
dual, in the sense that one of them can be computed from
the other. This observation helps us to further develop the
sequential factorization method.

2.3 Metric Transformation
The decomposition of (8) is not completely unique: It is
unique only up to an affine transformation. The second step
of the method is necessary to find a 3 3¥  nonsingular ma-
trix A, which transforms $M  and $S  into the true solutions
M and S as follows.

M MA= $                                              (9)

S A S= -1 $                                            (10)

Observing that rows i f  and j f  of M must satisfy the

normalization constraints,
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we obtain the system of 3F overdetermined equations, such
that
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where L RŒ ¥3 3  is a symmetric matrix

L AAT= ,                                          (13)

and $i f  and $j f  are the rows of $M . By denoting if
T =

i i if f f1 2 3, , , jf
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the system (12) can be rewritten as

Gl c= ,                                           (15)

where G R FŒ ¥3 6 , l Œ R6 , and c Œ R F3  are defined by
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and
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             g a bT
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The simplest solution of the system is given by the pseudo-
inverse method, such that

l c=
-

G G GT Te j
1

.                                     (18)

The vector l determines the symmetric matrix L, whose ei-
gendecomposition gives A. As a result, the motion M and
the shape S are derived according to (9) and (10).

The matrix A is an affine transform which transforms $M
into M in the motion space, while the matrix A-1  transforms
$S  into S in the shape space. Obtaining this transform is the

main purpose of the second step of the factorization
method, which we call metric transformation.

3 A SEQUENTIAL FACTORIZATION METHOD

3.1 Overview
In the original factorization method, there was one meas-
urement matrix W containing tracked feature positions
throughout the image sequence. After all the input images
are given and the feature positions are collected into the
matrix W, the motion and shape are then computed. In real-
time applications, however, it is not feasible to use this
batch-type scheme. It is more desirable to obtain an esti-
mate at each moment sequentially. The input to the system
must be viewed as a vector time series. At frame f, two
vectors containing feature positions such that

x yf
T

f f fP f
T

f f fPx x x y y y= =1 2 1 2, , , , , ,K K and        (19)

are given. Immediately after receiving these vectors, the
system must compute the estimates of the camera coordi-
nates i f , j f , and the shape Sf  at that frame. At the next

frame, new samples x f +1  and y f +1  arrive, and new camera

coordinates if +1 and jf +1 are to be computed as well as an

updated shape estimate Sf +1 .

The key to developing such a sequential method is to ob-
serve that the shape does not change over time. The shape
space is stationary, and, thus, it should be possible to derive
Sf  from Sf -1  without performing expensive computations.

More specifically, we store the feature vectors x f  and y f

in a covariance-type matrix Z Rf
P PŒ ¥  defined recursively by

Z Zf f f f
T

f f
T= + +-1 x x y y .                           (20)

As shown later, the rank of Zf  is at most three, and its three

dominant eigenvectors Qf  span the shape space. Once Qf  is

obtained, the camera coordinates at frame f can be com-
puted simply by multiplying the feature vectors and the
eigenvectors as follows.

$ , $i x j yf
T

f
T

f f
T

f
T

fQ Q= =                         (21)

This framework makes it possible to estimate camera co-
ordinates immediately after receiving feature vectors at each
frame. All information obtained up to the frame is accumu-
lated in Qf  and used to produce the estimates at that frame.

In (20), the size of Zf  is fixed to P P¥ , which only de-

pends on the number of feature points. Therefore, the algo-
rithm does not need to store any matrices whose sizes in-
crease over time.

The computational effort in the original factorization
method is dominated by the cost of the singular value de-
composition. In the framework above, we need to compute
eigenvectors of Zf . Note that, however, we only need the

first three dominant eigenvectors. Fortunately, several
methods exist to compute only the dominant eigenvectors
with much less computation necessary to compute all the
eigenvectors. Before describing the details of our algorithm,
we briefly review these techniques in the following section.

3.2 Iterative Eigenvector Computation
Among the existing methods which can compute dominant
eigenvectors of a square matrix, we introduce two methods,
the power method and orthogonal iteration [3]. The power
method is the simplest, which computes the most dominant
eigenvector, i.e., an eigenvector associated with the largest
eigenvalue. It provides the starting point for most other
techniques, and is easy to understand. The method of or-
thogonal iteration, which we adopt in our method, is able
to compute several dominant eigenvectors.

3.2.1 Power Method
Assume that we want to compute the most dominant ei-
genvectors of an n n¥  matrix B. Given a unit two-norm

vector q 0a f Œ Rn , the power method iteratively computes a

sequence of vectors q kb f :
for k = 1, 2, �
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The second step of the iteration is simply a normaliza-

tion that prevents q kb f  from becoming very large or very

small. The vectors q kb f  generated by the iteration converge
to the most dominant eigenvector of B. To examine the con-
vergence property of the power method, suppose that B is
diagonalizable. That is, X BX n

- =1
1diag l l, ,Kc h  with an or-

thogonal matrix X n= x x1, ,K , and l l l1 2> ≥ ≥K n . If
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q q x

x x

k k
j j

k
j

j

n

k j j
k

j

n

j

B c

c
c
c

b f a f= =
F
H
GG

I
K
JJ

= +
F
HG

I
KJ

F
H
GG

I
K
JJ

=

=

Â

Â

x x l

x l
l
l

0

1

1 1 1
1 12

(23)

where x  is a constant. Since l l l1 2> ≥ ≥K n , (23)

shows that the vectors q kb f  point more and more accurately
toward the direction of the dominant eigenvector x1 , and
the convergence factor is the ratio r = l l2 1 .
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3.2.2 Orthogonal Iteration
A straightforward generalization of the power method can
be used to compute several dominant eigenvectors of a
symmetric matrix. Assume that we want to compute p
dominant eigenvectors of a symmetric matrix B Rn nŒ ¥ ,
where 1 £ £p n . Starting with an n p¥  matrix Q0  with or-
thonormal columns, the method of orthogonal iteration
generates a sequence of matrices Q Rk

n pŒ ¥ :

for k = 1, 2, �
Y BQ

Q R Y
k k

k k k

=

=
-1

QR factorizationa f
end

The second step of the above iteration is the QR factori-
zation of Yk , where Qk  is an orthogonal matrix and Rk  is an
upper triangular matrix. The QR factorization can be
achieved by the Gram-Schmidt process. This step is viewed
as a normalization process that is similar to the normaliza-
tion used in the power method.

Suppose that X BXT
n= diag l l1, ,Kc h  is the eigende-

composition of B with an orthogonal matrix X n= x x1, ,K ,

and l l l1 2> ≥ ≥K n . It has been shown in [3] that the

subspace range Qkc h  generated by the iteration converges to

span x x1, ,K p{ }  at a rate proportional to l lp p+1 , i.e.,

dist (range  range( ), ( ))Q Xk p
p

p

k

£ +z
l
l

1 ,                (24)

where Xp p= x x1, ,K  and z  is a constant. The function

dist represents the subspace distance defined by

dist (range ( )  range ( ))Q X Q Q X Xk p k k
T

p p
T, = -

2
        (25)

The method offers an attractive alternative to the singu-
lar value decomposition in situations where B is a large
matrix and a few of its largest eigenvalues are needed. In
our case, these conditions clearly hold. In addition, when
the rank theory of the factorization method [1] holds, the
ratio l l4 3  is very small. As a result, we should achieve
fast convergence for computing the first three eigenvectors.

3.3 Sequential Factorization Algorithm
As in the original method, the sequential factorization
method consists of two steps, sequential shape space com-
putation and sequential metric transformation.

3.3.1 A Sequential Shape Space Computation
In the sequential factorization method, we consider the
feature vectors x f

T  and y f
T  as a vector time series. Let us

denote the measurement matrix in the original factorization
method at frame f by Wf . Then, it grows in the following

manner:

W W W
T

T

T

T

T

T

f

T

f
T

T

f
T

1
1

1
2

1

2

1

2

1

1

=
L
N
MM

O
Q
PP =

L

N

MMMMM

O

Q

PPPPP

=

L

N

MMMMMMM

O

Q

PPPPPPP

x
y

x
x
y
y

x

x

y

y

, , , ,K

M

M

K          (26)

Now, let us define a matrix time series Z Rf
P PŒ ¥  by

Z Zf f f f
T

f f
T= + +-1 x x y y .                         (27)

From the definition, it follows that

Z W Wf f
T

f= .                                      (28)

Since the rank of Wf  is at most three, the rank of Zf  is also

at most three. If

W U Vf f f f
T= Â                                      (29)

is the singular value decomposition of Wf , where U Rf
fŒ ¥2 3

and V Rf
PŒ ¥3  are orthogonal matrices, and Â =f diag

s s sf f f, , ,, ,1 2 3e j , then

Z U V U V V Vf f f f
T T

f f f
T

f f f
T= Â Â = Âe j 2 .            (30)

This means the eigenvectors of Zf  are equivalent to the

right singular vectors Vf  of Wf . Hence, it is possible to ob-

tain the shape space by computing the eigenvectors of Zf .

To compute Vf , we combine orthogonal iteration with

updating by (27). Given a P � 3 matrix Q0  with orthonormal

columns and a null matrix Z RP P
0 Œ ¥ , the following algo-

rithm generates a sequence of matrices Q Rf
PŒ ¥3 :

[Algorithm (1)] for f   1, 2, ....
1) Z Zf f f f

T
f f

T= + +-1 x x y y

2) Y Z Qf f= -1

3) Q R Yf = QR factorizationa f
end

The index f corresponds to the frame number and each
iteration is performed frame by frame. The matrix Qf  gen-

erated by the algorithm is expected to converge to the ei-
genvectors Vf  of Zf . While the original orthogonal iteration

works with a fixed matrix, the above algorithm works with
the matrix Zf , which varies from iteration to iteration, in-

corporating new features. In other words, the sequential
factorization method folds the update of Zf  into the or-

thogonal iteration. If range ( )Vf  randomly changes over

time, no convergence is expected to appear. However, it can
be shown that

range (  range ( range ( for all V W S ff f
T T) ) ),= = .      (31)

Therefore, range (Vf )  is stationary and range (Qf ) converges

to range (Vf )  as in the orthogonal iteration. Even when noise

exists, if the noise is uncorrelated, or the noise space is
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orthogonal to the signal space range (Vf ) , then range (Vf )

is still equal to range (ST ) , and the convergence can be
shown. The following convergence rate of the algorithm
is deduced from the convergence rate of the orthogonal
iteration.

dist (range (  range (Q V cf f
k

kk

f

), )) ,

,
£

=
’ s

s
4

31

              (32)

3.3.2 Stationary Basis for the Shape Space
Algorithm (1), presented in the previous section, produces
the matrix Qf , which converges to the matrix Vf  that spans

the shape space. The true shape and motion are determined
from the shape space by a metric transformation. It is not
straightforward at this point, however, to apply the metric
transformation sequentially. The problem is that, even
though range (Vf )  is stationary, the matrix Vf  itself changes

as the number of frames increases. This is due to the nature
of singular vectors. They are the basis for the row and col-
umn subspaces of a matrix, and the singular value decom-
position chooses them in a special way. They are more than
just orthonormal. As a result, they rotate in the 3D subspace
range (Vf ) . Recall that the matrix A obtained in metric trans-

formation (9) is a transform from $Mf  (or Uf ) to Mf  in the

subspace range ( $ )Mf . Since Vf  changes at each frame, Uf

also changes. Consequently, the matrix A also changes frame
by frame.

For clarity, let us denote an A matrix at frame f as Af .

The fact that Af  changes at each frame makes it difficult to

estimate Af  iteratively and efficiently. Thus, we need to

add an additional process to obtain stationary basis for the
shape space to update matrix Af .

Let us define a projection matrix H Rf
P PŒ ¥  onto

range ( )Qf  by

H Q Qf f f
T= ,                                    (33)

where Qf  is the output from Algorithm (1). Obviously, the

rank of Hf  is at most three. Since range ( )Qf  (= range ( )$Mf )

is stationary, the projection matrix Hf  must be stationary. It is

thus possible to obtain the stationary basis for the shape space
by replacing Qf  with the eigenvectors of Hf .

An iterative method similar to Algorithm (1) can be used
to reduce the amount of computation. Given a P ¥ 3 matrix
Q0  with orthonormal columns, the iterative method below

generates a matrix Q Rf
PŒ ¥3 , which provides the station-

ary basis for the shape space.

[Algorithm (2)] for f = 1, 2, ....
H Q Q

Y H Q

Q R Y

f f f
T

f f

f

=

=

=
-1

(QR factorization)

end

3.3.3 Sequential Metric Transformation
In the previous section, we derived the shape space in terms
of Qf . Once Qf  is obtained, it is possible to compute camera

coordinates $i f  and $j f  as

$ , $i x j yf
T

f
T

f f
T

f
T

fQ Q= =                             (34)

These coordinates are used to solve the overdetermined
equations (12) and the true camera coordinates are recov-
ered in the same way as in the original method. Doing so,
however, requires storing all the coordinates $i f  and $j f , the

number of which may be very large. Instead, we use the
following sequential algorithm.

[Algorithm (3)] for f = 1, 2, ....
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$ , $ $ , $ $ , $ $ , $
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end

Let Gf  and c f  be the matrices G and c at frame f, where

G and c are defined in Section 2.3. From the definition, it
follows that

D G Gf f
T

f=                                         (35)

E Gf f
T

f= c .                                        (36)

Assigning (35) and (36) to (18), we have

lf f fD E= -1                                         (37)

which gives the symmetric matrix Lf . The eigendecom-

position of Lf  yields the affine transform Af  and, as a re-

sult, the camera coordinates and the shape are obtained
as follows:

i i j jf
T

f
T

f f
T

f
T

fA A= =$ , $                               (38)

S Qf f f= -A 1                                        (39)

Algorithm (3) followed by (37), (38), and (39) completes the
sequential method. The size of matrices Df  and Ef  are fixed to

6 6¥  and 6 1¥ , and the method does not store any matrices
that grow, even in the sequential metric transformation.

4 EXPERIMENTS

4.1 Synthetic Data
In this section, we compare the accuracy of our sequential
factorization method with that of the original factorization
method. Since both methods are essentially based on the
rank theory, we do not expect any difference in the results.
Our purpose here is to confirm that the sequential method
has the same accuracy of shape and motion recovery as the
original method.
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4.1.1 Data Generation
The object in this experiment consists of 100 random feature
points. The sequences are created using a perspective pro-
jection of those points. The image coordinates of each point
are perturbed by adding Gaussian noise, which we assume
to simulate tracking error and image noise. The standard
deviation of the Gaussian noise is set to two pixels of a 512
� 512 pixel image. The distance of the object center from the
camera is fixed to ten times the object size. The focal length is
chosen so that the projection of the object covers the whole
512 � 512 image. The camera is rotated as shown in Fig. 1,
while the object is translated to keep its image at the image
center. Quantization errors are not added, since we assume
that we are able to track features with a subpixel resolution.

Fig. 1. True camera motion. The camera roll, pitch, and yaw are varied
as shown in this figure. The sequence consists of 150 frames.

When discussing the accuracy of the sequential method,
one needs to consider its dynamic property regarding the
3D recovery. The accuracy of the recovery at a particular
frame by the sequential method depends on the total
amount of motion up to that time, since the recovery is
made only from the information obtained up to that time.
At the beginning of an image sequence, for example, the
motion is generally small, so high accuracy cannot be ex-
pected. The accuracy generally improves as the motion be-
comes larger. The original method does not have this dy-
namic property, since it is based on a batch-type scheme
and uses all the information throughout the sequence.

In order to compare both methods under the same condi-
tions, we perform the following computations beforehand.
First, we form a submatrix Wf , which only contains the fea-

ture positions up to frame f. The original factorization is ap-
plied to the submatrix, then the results are kept as solutions
at frame f. They are the best estimates given by the original
method. Repeating this process for each frame, we derive
the best estimates, with which our results are compared.

4.1.2 Accuracy of the Sequential Shape Space
Computation

We first discuss the convergence property of the sequential
shape space computation. The sequential factorization

method starts with Algorithm (1) in Section 3.3.1, iteratively
generating the matrix Qf , which is an estimate for the true

shape space ST . Let us represent the estimation error with
respect to the true shape space by

E Q Ss f
T= dist (range ( range ( ))),                     (40)

Recall that the function dist provides a notion of difference
between two spaces. On the other hand, the original
method produces the best estimate for the shape space by
computing the right singular vectors Vf  of the submatrix

Wf , and its error, with respect to the true shape space, is also

represented by

E V So f
T= dist (range ( range ( ))),                     (41)

Comparing both errors, Fig. 2 shows that they are almost
identical. That is, the errors given by the sequential method
are almost equal to those given by the original method.

Fig. 2. Shape space errors. Shape space estimation errors by the se-
quential method (solid line) and the original method (dashed line) with
respect to the true shape space. The errors are defined by subspace
distance and plotted logarithmically.

At the beginning of the sequence, the amount of motion
is small and both errors are relatively large. The ratio of the
fourth to third singular values, shown in Fig. 3, also indi-
cates that it is difficult to achieve good accuracy at the be-
ginning. Both errors, however, quickly become smaller as the
camera motion becomes larger. After about the 20th frame,
constant errors of 3 10 2¥ - are observed in this experiment.

The solutions given by the two methods are so close that
the graphs are completely overlapped. Thus, we also plot
their difference defined by

DE Q Vf f= dist (range ( range ( ))),                     (42)

in Fig. 4. Although DE  is relatively large at the beginning, it
quickly becomes very small. In fact, after about the 30th frame,
DE  is less than 1 10 7¥ - , while Es  and Eo  are both 3 10 2¥ - .
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4.1.3 Accuracy of the Motion and Shape Recovery
The three plots of Fig. 5 show errors in roll, pitch, and yaw
in the recovered motion: The solid lines correspond to the
sequential method, the dotted lines to the original method.
The difference in motion errors between the original and
sequential methods is quite small.

Both results are unstable for a short period at the begin-
ning of the sequence. After that, they show two kinds of
errors: random and structural. Random errors are due to
Gaussian noise added to the feature positions. Structural
errors are due to perspective distortion, and relate to the
motion patterns. The structural errors show a negative peak
at about the 60th frame and are almost constant between
the 90th and 120th frames. Note that the pattern corre-
sponds to the motion pattern shown in Fig. 1.

Of course, these intrinsic errors cannot be eliminated in
the sequential method. The point to observe is that the dif-
ferences between the two solutions are sufficiently smaller
than the intrinsic errors.

Shape errors, which are compared in Fig. 6, also indicate
the same results. Again, the differences between the two
methods are quite small compared to the intrinsic errors
which the original method possesses. Note that no Gaus-
sian noise appears in the shape errors, since they are aver-
aged over all the feature points.

We conclude from these results that the sequential
method is nearly as accurate as the original method except
that some extra frames are required to converge.

4.2 Real Images
Experiments were performed on two sets of real images.
The first set is an image sequence of a satellite rotating in
space. The other experiment uses a long video recording
(764 images) of a house taken with a hand-held camera.
These experiments demonstrate the applicability of the se-
quential factorization method in real situations. In both
experiments, features are selected and tracked using the
method presented by Tomasi and Kanade [1].

4.2.1 Satellite Images
Fig. 7 shows an image of the satellite with selected features
indicated by small squares. The image sequence was digitized
from a video recording [4] actually taken by a space shuttle

Fig. 3. Singular value ratio. The ratio of the fourth to third singular val-
ues, that is s s4 3 .

Fig. 4. Difference of shape space errors. The difference of the esti-
mates by the sequential and original methods versus the frame num-
ber. The difference is plotted logarithmically.

Fig. 5. Motion errors. Errors of recovered camera roll (top), pitch
(middle), and yaw (bottom). The errors given by the sequential method
are plotted with solid lines, while the errors given by the original
method are plotted with dotted lines.
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astronaut. The feature tracker automatically selected and
tracked 32 features throughout the sequence of 101 images.
Of these, five features on the astronaut maneuvering
around the satellite were manually eliminated because they
had a different motion. Thus, the remaining 27 features
were processed. Fig. 8 shows the recovered motion in terms
of roll, pitch, and yaw. The side view of the recovered
shape is displayed in Fig. 9, where the features on the solar
panel are marked with opaque squares and others with
filled squares. No ground-truth is available for the shape or
the motion in this experiment. Yet, it appears that the solu-
tions are satisfactory, since the features on the solar panel
almost lie in a single line in the side view.

4.2.2 House Images
Fig. 10 shows the first image of the sequence used in the
second experiment. Using a hand-held camera, one of the
authors took this sequence while walking. It consists of 764
images which correspond to about 25 seconds. The feature
tracker detected and tracked 62 features. The recovered
motion and shape are shown in Figs. 11 and 12. It is clearly
seen that the shape is qualitatively correct. It is also reason-
able to observe that only the camera yaw is increasing, be-
cause the camera is moving parallel to the ground. In addi-
tion, note that the computed roll motion reveals the pace of
the recorder's steps, which is about one step per second.

Further evaluation of accuracy in these experiments is dif-
ficult. However, this qualitative analysis of the results with
real images, and quantitative analysis of the results with
synthetic data essentially shows that the sequential method
works as well with real images as the original batch method.

4.3 Computational Time
Finally, we compare the processing time of the sequential
method with the original method. The computational
complexity of the original method is dominated by the
cost of the singular value decomposition, which needs
14 11 32 3FP P+  computations for a 2F P¥  measurement

Fig. 6. Shape error. This figure compares the shape errors given by the
two methods. The errors given by the sequential method are plotted with
solid lines, while the errors given by the original method are plotted with
dotted lines. The errors are computed as the root-mean-square errors of
the recovered shape with respect to the true shape, at each frame.

Fig. 7. An image of a satellite. The first frame of the satellite image
sequence. The superimposed squares indicate the selected features.

Fig. 8. Recovered motion of satellite. Recovered camera roll (solid line),
pitch (dashed line), and yaw (dotted line) for the satellite image sequence.

Fig. 9. Side view of the recovered shape. A side view of the recovered
shape of the satellite. The features on the solar panel are shown with
opaque squares and others with filled squares. Notice that the features
on the solar panel correctly lie in a single plane.
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matrix with 2F P≥  [5]. Note that F corresponds to the
number of frames and P to the number of features. On the
other hand, the complexity of the sequential method is
22 542P P+  for computing dominant eigenvectors, plus 4 2P
for updating the Z matrix. Computing the solution for frame
F, therefore, takes only O P( )2  using the sequential method,
while the original method would require O FP( )2  operations.

Fig. 13 shows the actual processing time of the sequen-
tial method on a SparcStation-10 compared together with
that of the original method. The number of features varied
from 10 to 500, while the number of frames was fixed at
120. The processing time for selecting and tracking features
was not included. The singular value decomposition of the
original method is based on a routine found in [6]. The re-
sults sufficiently agree with our analysis above. In addition,
when the number of features is less than 40, the sequential
method is possible to run within 1/30 s, which means
video-rate processing on a SparcStation-10.

5 CONCLUSIONS

We have presented the sequential factorization method,
which provides estimates of shape and motion at each
frame from a sequence of images. The method produces as
accurate and robust results as the original method, while
significantly reducing the computational complexity. The
reduction in complexity is important for applying the fac-
torization method to real-time applications. Furthermore,
the method does not require storing any growing matrices
so that its implementation in VLSI or DSP is feasible.

Faster convergence in the shape space computation could
be achieved using more sophisticated algorithms, such as
the orthogonal iteration with Ritz acceleration [3] instead of
the basic orthogonal iteration. Also, it is possible to use
scaled orthographic projection or paraperspective projec-
tion [2] to improve the accuracy of the sequential factoriza-
tion method.

Fig. 10. An image of a house. The first frame of the house image se-
quence. The superimposed squares indicate the selected features.

Fig. 11. Recovered motion of house. Recovered camera roll (solid line),
pitch (dashed line), and yaw (dotted line) for the house image sequence.

Fig. 12. Top view of the recovered shape. A view of the recovered
shape of the house from above. The features on the two side walls are
correctly recovered.

Fig. 13. Processing time. The processing time of the sequential method
on a Sun4/10 (solid line) compared with that of the original method
(dotted line), as a function of the number of features which is varied
from 10 to 500. The number of frames is fixed at 120.
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