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Abstract 
Inferring scene geometry and camera motion from a stream of images is possible in principle, but is an ill-conditioned 
problem when the objects are distant with respect to their size. We have developed a factorization method that 
can overcome this difficulty by recovering shape and motion under orthography without computing depth as an 
intermediate step. 

An image stream can be represented by the 2FxP  measurement matrix of the image coordinates of P points 
tracked through F frames. We show that under orthographic projection this matrix is of rank 3. 

Based on this observation, the factorization method uses the singular-value decomposition technique to factor 
the measurement matrix into two matrices which represent object shape and camera rotation respectively. Two 
of the three translation components are computed in a preprocessing stage. The method can also handle and obtain 
a full solution from a partially filled-in measurement matrix that may result from occlusions or tracking failures. 

The method gives accurate results, and does not introduce smoothing in either shape or motion. We demonstrate 
this with a series of experiments on laboratory and outdoor image streams, with and without occlusions. 

1 Introduction 

The structure-from-motion problem--recovering scene 
geometry and camera motion from a sequence of 
images--has attracted much of the attention of the vi- 
sion community over the last decade. Yet it is common 
knowledge that existing solutions work well for perfect 
images, but are very sensitive to noise. We present a 
new method called thefactorization method which can 
robustly recover shape and motion from a sequence of 
images under orthographic projection. The effects of 
camera translation along the optical axis are not ac- 
counted for by orthography. Consequently, this com- 
ponent of motion cannot be recovered by our method 
and must be small relative to the scene distance. 
However, this restriction to shallow motion improves 
dramatically the quality of the computed shape and of 
the remaining five motion parameters. We demonstrate 
this with a series of experiments on laboratory and out- 
door sequences, with and without occlusions. 

In the factorization method, we represent an image 
sequence as a 2FxP  measurement matrix W, which is 
made up of the horizontal and vertical coordinates of 
P points tracked through F frames. If image coordinates 
are measured with respect to their centroid, we prove 
the rank theorem: under orthography, the measurement 
matrix is of rank 3. As a consequence of this theorem, 
we show that the measurement matrix can be factored 
into the product of two matrixes R and S. Here, R is 
a 2Fx3 matrix that represents camera rotation, and S 
is a 3 x P  matrix that represents shape in a coordinate 
system attached to the object centroid. The two compon- 
ents of the camera translation along the image plane are 
computed as averages of the rows of W. When features 
appear and disappear in the image sequence because of 
occlusions or tracking failures, the resulting measure- 
ment matrix W is only partially filled in. The factoriza- 
tion method can handle this situation by growing a par- 
tial solution obtained from an initial full submatrix into 
a complete solution with an iterative procedure. 
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The rank theorem captures precisely the nature of 
the redundancy that exists in an image sequence, and 
permitsa large number of points and frames to be proc- 
essed in a conceptually simple and computationally ef- 
ficient way to reduce the effects of noise. The resulting 
algorithm is based on the singular-value decomposition, 
which is numerically well behaved and stable. The 
robustness of the recovery algorithm in turn enables 
us to use an image sequence with a very short interval 
between frames (an image stream), which makes 
feature tracking relatively simple and the assumption 
of orthography easier to approximate. 

2 Relation to Previous Work 

In Ullman's original proof of existence of a solution 
(Ullman 1979) for the structure-from-motion problem, 
the coordinates of feature points in the world are ex- 
pressed in a world-centered system of reference and an 
orthographic projection model is assumed. Since then, 
however, most computer vision researchers opted for 
perspective projection and a camera-centered represen- 
tation of shape (Prazdny 1980; Bruss & Horn 1983; Tsai 
& Huang 1984; Adiv 1985; Waxman & Wohn 1985; 
Bolles et al. 1987; Horn et al 1988; Heeger & Jepson 
1989; Heel 1989; Matthies et al. 1989; Spetsakis & 
Aloimonos 1989; Broida et al. 1990). With this repre- 
sentation, the position of feature points is specified by 
their image coordinates and by their depths, defined 
as the distance between the camera center and the 
feature points, measured along the optical axis. Unfor- 
tunately, although a camera-centered representation 
simplifies the equations for perspective projection, it 
makes shape estimation difficult, unstable, and noise 
sensitive. 

There are two fundamental reasons for this. First, 
when camera motion is small, effects of camera rota- 
tion and translation can be confused with each other: 
for example, a small rotation about the vertical axis and 
a small translation along the horizontal axis can gen- 
erate very similar changes in an image. Any attempt 
to recover or differentiate between these two motions, 
though possible mathematically, is naturally noise sen- 
sitive. Second, the computation of shape as relative 
depth, for example, the height of a building as the dif- 
ference of depths between the top and the bottom, is 
very sensitive to noise, since it is a small difference 
between large values. These difficulties are especially 
magnified when the objects are distant from the camera 

relative to their sizes, which is often the case for 
interesting applications such as site modeling. 

The factorizaiton method we present here takes ad- 
vantage of the fact that both difficulties disappear when 
the problem is reformulated in world-centered coordin- 
ates and under orthography. This new (and old--in a 
sense) formulation links object-centered shape to im- 
age motion directly, without using retinotopic depth as 
an intermediate quantity, and leads to a simple and well- 
behaved solution. Furthermore, the mutual indepen- 
dence of shape and motion in world-centered coor- 
dinates together with the linearity of orthographic pro- 
jection makes it possible to cast the structure-from- 
motion problem as a factorization problem, in which 
a matrix representing image measurements is decom- 
posed directly into camera motion and object shape. 

We first introduced this factorization method in 
(Tomasi & Kanade 1990), where we treated the case 
of single-scanline images in a flat, two-dimensional 
world. In (Tomasi & Kanade 1991a) we presented the 
theory for the case of shallow camera motion in three 
dimensions and full two-dimensional images. Here, we 
extend the factorization method for dealing with feature 
occlusions as well as present experimental results with 
real-world images. Debruuner and Ahuja have pursued 
an approach related to ours, but using a different for- 
malism (Debruuner & Ahuja 1992). Assuming that mo- 
tion is constant over a period, they provide both closed- 
form expressions for shape and motion and an incre- 
mental solution (one image at a time) for multiple 
motions by taking advantage of the redundancy of 
measurements. Boult and Brown have investigated the 
factorization method for multiple motions (Boult & 
Brown 1991), in which they count and segment separate 
motions in the field of view of the camera. 

3 The Factorization Method 

Suppose that we have tracked P feature points over F 
frames in an image stream. We then obtain trajectories 
of image coordinates {(ufe, v~) I f = 1, . . . ,  F, p = 
1, . . . ,  P}. We write the horizontal feature coordinates 
u.~ into an F x P  matrix U with one row per frame and 
one column per feature point. Similarly, an FxP  matrix 
V is built from the vertical coordinates v~. The com- 
bined matrix of size 2FxP 

U 
w 
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is called the measurement matrix. The rows of the ma- 
trices U and V are then registered by subtracting from 
each entry the mean of the entries in the same row: 

~ = u ~ -  a: 
(1) 

where 

P 
1 

-:=7 Z. .  p=l 
P 

1 

p=l 
This produces two new F x P  matrixes I~ = [~ ]  and 

= [~fp]. The matrix 

is called the registered measurement matr/x. This is the 
input to our factorization method. 

3.1 The Rank Theorem 

We now analyze the relation between camera motion, 
shape, and the entries of the registered measurement 
matrix "vV underorthography. This analysis leads to the 
key result that W is highly rank-deficient. 

Suppose that we place the origin of the world 
reference system at the centroid of the P points sp = 
(xp, yp, zp) r, p = 1, . . . ,  P in space that correspond 
to the P feature points tracked in the image stream 
(figure 1). The orientation of the camera reference 
system corresponding to frame numberfis determined 
by a pair of unit vectors if, j /pointing along the 
scanlines and the columns of the image respectively, 
and defined with respect to the world reference system. 
Under orthography, all projection rays are then parallel 
to the cross product of if and jf: 

k f =  if × j f  

From figure 1 we see that the projection (up, vfp), that 
is, the image feature position, of point sp = (Xp, yp, 
zp) r onto frame f is given by the equations 

u~ = i :<s .  - t f )  

v~ = j f  (s. - t:) 

where q = (a:, bf, cy) r is the vector from the world 
origin to the origin of image frame f. 

Note that since the origin of the world coordinates 
is placed at the centroid of the object points, we have 

P 
± Z s , = 0  
P p=l 

We can now write expressions for the entries tT~, 
and ~# defined in (1) of the registered measurement 
matrix. For the registered horizontal image projection 
we have 

@ = uy, - a: 

P 
1 

= i f  (sp - t/) - p Z i f  (sq - tf) 
q=l 

1 P 
: if ~SP -- e q__~l Sq ~ 

= if s, (3) 

We can write a similar equation for ~fp. To summarize, 

= j: s. (4) 

By collecting the two sets of FXP equations (4), the 
registered measurement matrix *~7V (equation (2)) can 
be expressed in a matrix form: 

where 

if ,  = R S  (5) 

I • 

R =  irr 
j~. (6) 

if_ 
represents the camera rotation and 

S = [sl "'" sel (7) 

is the shape matrix• In fact, the rows of R represent 
the orientations of the horizontal and vertical camera 
reference axes throughout the stream, while the col- 
unms of S are the three-dimensional coordinates of the 
P feature points with respect to their centroid. 

Since R is 2FX3 and S is 3xP, equation (5) implies 
the following. 
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point  p 
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cent ro id  

Y 

X t: 

F/g. 1. The two systems of reference used in our problem formulation. 

Rank  Theorem.  Without noise, the registered 
measurement matrix I¥ is at most of  rank three. 

The rank theorem expresses the fact that the 2FxP im- 
age measurements are highly redundant. Indeed, they 
could all be described concisely by giving F frame 
reference systems and P point coordinate vectors, if only 
these were known. 

From the first and the last line of equation (3), the 
original unregistered matrix W can be written as 

W = RS + tee r (8) 

where t = (al, • •., a t ,  • •. ,  be) r is a 2F-dimensional 
vector that collects the projections of camera transla- 
tion along the image plane (see equation (3)), and ep r 
= (1 . . . . .  1) is a vector of P ones. In scalar form, 

uyp = if_sp + af (9) 
v, gs, + b: 

Comparing with equations (1), we see that the two com- 
ponents of camera translation along the image plane 
are simply the averages of the rows of W. 

In the equations above, if and j / a r e  mutually or- 
thogonal unit vectors, so they must satisfy the 
constraints 

lifl = IJfl = 1 and i f j f  = 0 (10) 

Also, the rotation matrix R is unique if the system of 
reference for the solution is aligned, say, with that of 
the first camera position, so that 

il = ( 1 , 0 , 0 )  r and Jl = (0, 1 ,0)  T (11) 

Without noise, the registered measurement matrix 
must be at most of rank 3. When noise corrupts the 

images, however, W will not be exactly of rank 3. For- 
tunately, the rank theorem can be extended to the case 
of noisy measurements in a well-defined manner. The 
next subsection introduces the notion of approximate 
rank, using the concept of singular value decomposi- 
tion (Golub & Reinsch 1971). 

3.2 Approximate Rank 

Assuming that 2F _> P, the matrix W can be decom- 
posed (Golub & Reinsch 1971) into a 2FxP  matrix O1, 
a diagonal P x P  matrix ~, and a P x P  matrix O2, 

V,' = O~ ~ 02 (12) 

such that O7 O1 = O5 O2 = 02 = I, where I is 
the P x P  identity matrix. The assumption 2F _> P is 
not crucial: i f 2F  < P, everything can be repeated for 
the transpose of W. ~ is a diagonal matrix whose 
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diagonal entries are the singular values ffl >- • • • >- 
a e sorted in nonincreasing order. This is the singular- 
value decomposition (SVD) of the matrix V¢. 

Suppose that we pay attention only to the first three 
columns of O1, the first 3x3 submatrix of 1; and the 
first three rows of 02. If we partition the matrices O1, 
If, and 02 as follows; 

O1 = [O i  I Oi'] } 2F 

3 P - 3  

we have 

I~ = 

o~ = 

0 I ~ , ,  } P - 3  

3 P - 3  

~' } 1,-3 

P 

(13) 

ol  r, 02 = o;  ~,' o l  + o:'r," o~' 

Let "¢g* be the ideal registered measurement 
matrix, that is, the matrix we would obtain in the 
absence of noise. Because of the rank theorem, "¢¢* 
has at most three nonzero singular values. Since the 
singular values in ~ are sorted in nonincreasing order, 
~' must contain all the singular values of "/~¢* that ex- 
ceed the noise level. Furthermore, it can be shown 
(Golub & Van Loan 1989) that the best possible rank-3 
approximation to the ideal registered measurement 
matrix W* is the product 

¢v = o~ z '  o~ 

We can now restate our rank theorem for the case of 
noisy measurements. 

Rank Theorem for Noisy Measurements. The best 
possible shape and rotation estimate is obtained by con- 
sidering only the three greatest singular values of  l~, 
together with the corresponding left and right 
eigenvectors. 

Thus, -~r is the best estimate of ¥~r*. Now if we define 

f~ = o l  [E'] ~ 

g = [~']"~ o f  

we can write 

l~" = R S (14) 

The two matrices 1~ and S are of the same size as the 
desired rotation and shape matrices R and S: I~ is 
2Fx3, and S is 3 x P  However, the decomposition (14) 
is not unique. In fact, i fQ is any invertible 3x3 matrix, 
the matrices I~Q and Q- lg  are also a valid decomposi- 
tion of l~, since 

(I~Q) (Q-1 g) = I~(Q Q - ~ ) g  = f i g  = ~¢ 
Thus, 1~ and S are in general different from R and S. 
A striking fact, however, is that except for noise the 
matrix 11 is a linear transformation of the true rotation 
matrix R, and the matrix S is a linear transformation 
of the true shape matrix S. Indeed, in the absence of 
noise, R and 1~ both span the column space of the 
registered measurement matrix W = "~V* = "~V. Since 
that column space is three-dimensional because of the 
rank theorem, R and 1~ are different bases for the same 
space, and there must be a linear transformation be- 
tween them. 

Whether the noise level is low enough to be ignored 
at this juncture depends also on the camera motion and 
on shape. However, the singular-value decomposition 
yields sufficient information to make this decision: the 
requirement is that the ratio between the third and 
fourth largest singular values of*~TV be sufficiently large. 

3.3 The Metric Constraints 

We have found that the matrix 1~ is a linear transfor- 
mation of the true rotation matrix R. Likewise, S is 
a linear transformation of the true shape matrix S. More 
specifically, there exists a 3 x3 matrix Q such that 

R = ~iQ 
s = Q - t  ~ (15) 

In order to find Q we observe that the rows of the 
true rotation matrix R are unit vectors and the first F 
are orthogonal to the corresponding F in the second 
half of R. These metric constraints yield the over- 
constrained quadratic system 

QQ~ i/ = I 

"if Q~f = 1  (16) 

^ QQr'jf g =0 
in the entries of Q. This is a simple data-fitting prob- 
lem which, though nonlinear, can be solved efficiently 
and reliably. Its solution is determined up to a rotation 
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of the whole reference system, since the orientation of 
the world reference system is arbitrary. This arbitrar- 
iness can be removed by enforcing the constraints (11), 
that is, by selecting the axes of the world reference 
system to be parallel with those of the first frame. 

3.4 Outline of the Complete Algorithm 

Based on the development in the previous sections, we 
now have a complete algorithm for the factorization of 
the registered measurement matrix W derived from a 
stream of images into shape S and rotation R as de- 
fined in equations (5)-(7). 
1. Compute the singular-value decomposition 17V = 

Olg 02. 
2. Define 1~ = O;(I:) 1/2 and g = (~ ')1/20~, , where 

the primes refer to the block partitioning defined in 
(13). 

3. Compute the matrix Q in equations (15) by impos- 
ing the metric constraints (equations (16)). 

4. Compute the rotation matrix R and the shape matrix 
S as R = I]Q and S = Q-lg. 

5. If desired, align the first camera reference system 
with the world reference system by forming the prod- 
ucts RRo and R~S, where the orthonormal matrix 
Ro = [il Jl kl] rotates the first camera reference 
system into the identity matrix. 

4 Experiments 

We test the factorization method with two real streams 
of images: one taken in a controlled laboratory environ- 
ment with ground-truth motion data, and the other in 
an outdoor environment with a hand-held camcorder. 

4.1 "Hotel" [mage Stream in a Laborato~ 

Some frames in this stream are shown in figure 2a. The 
images depict a small plastic model of a building. The 
camera is a Sony CCD camera with a 200 mm lens, 
and is moved by means of a high-precision positioning 
platform. Camera pitch, yaw, and roll around the model 
are all varied as shown by the dashed curves in figure 
3a. The translation of the camera is such as to keep 
the building within the field of view of the camera. 

For feature tracking, we extended the Lucas-Kanade 
method described in (Lucas & Kanade 1981) to allow 
also for the automatic selection of image features. This 
method obtains the displacement vector of the window 
around a feature as the solution of a linear 2x2  equa- 
tion system. Good image features are automatically 
selected as those points for which the above equation 
systems are stable. The details are presented in (Tomasi 
& Kanade 1991b; Tomasi 1991). 

Fig. 2a. The "Hotel" stream: four of the 150 frames. 
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Co) 
Fig. 2b. The "Hotel" stream: the 430 features selected by the automatic detection method. 
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~g. 3. Motion results for the "Hoter' stream: (a) true and computed camera rotation and (b) blow-up of the errors in (a). 
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The entire set of 430 features thus selected is 
displayed in figure 2b, overlaid on the first frame of 
the stream. Of these features, 42 were abandoned dur- 
ing tracking because their appearance changed too 
much. The trajectories of the remaining 388 features 
are used as the measurement matrix for the computa- 
tion of shape and motion. 

The motion recovery is precise. The plots in figure 
3a compare the rotation components computed by the 
factorization method (solid curves) with the values 
measured mechanically from the mobile platform 
(dashed curves). The differences are magnified in figure 
3b. The errors are everywhere less than 0.4 degrees 
and on average 0.2 degrees. The computed motion 
follows closely also rotations with curved profiles, such 
as the roll profile between frames 1 and 20 (second plot 
in figure 3a), and faithfully preserves all discontinuities 
in the rotational velocities: the factorization method 
does not smooth the results. 

Between frames 60 and 80, yaw and pitch are near- 
ly constant, and the camera merely rotates about its op- 
tical axis. That is, the motion is actually degenerate 
during this period, yet it has been correctly recovered. 
This demonstrates that the factorization method can 
deal without difficulty with streams that contain degen- 
erate substreams, because the information in the stream 
is used as a whole in the method. 

The shape results are evaluated qualitatively in figure 
4, which compares the computed shape viewed from 
above (a) with the actual shape (b). Notice that the 
walls, the windows on the roof, and the chimneys are 
recovered in their correct positions. 

To evaluate the shape performance quantitatively, we 
measured some distances on the actual house model 
with a ruler and compared them with the distances com- 
puted from the point coordinates in the shape results. 
Figure 5a shows the selected features. The diagram in 
figure 5b compares measured and computed distances. 
The measured distances between the steps along the 
right side of the roof (7.2 rnm) were obtained by mea- 
suring five steps and dividing the total distance (36 ram) 
by five. The differences between computed and 
measured results are of the order of the resolution of 
our ruler measurements (one millimeter). 

4.2 Outdoor "House" Image Stream 

The factorization method has been tested with an im- 
age stream of a real building, taken with a hand-held 
camera. 

Figure 6a shows some of the 180 frames of the 
"House" stream. The overall motion covers a relatively 
small rotation angle, approximately 15 degrees. Out- 
door images are harder to process than those produced 

° .  
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(a) Co) 

F/g. 4. Qualitative shape results for the "Hotel" stream: top view of the (a) computed and 0a) actual shape. 
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Fig. 5. Quantitative shape results for the "Hotel" stream: the features in (a) were measured with a ruler on the building model, and are com- 
pared in (b) with the computed distances (measured/computed, in ram). The scale factor was computed from the distance between features 
117 and 282. 

in the controlled environment of a laboratory, because 
lighting changes less predictably and the motion of the 
camera is more difficult to control. As a consequence, 
features are harder to track: the images are unpredict- 
ably blurred by motion and corrupted by vibrations of 
the video recorder's head during both recording and 
digitization. Furthermore, the camera's jumps and jerks 
produce a wide range of image disparities. 

The features found by the selection algorithm in the 
first frame are shown in figure 6b. There are many false 
features. The reflections in the window partially visible 
in the top left of the image move nonrigidly. More false 
features can be found in the lower left corner of the pic- 
ture, where the vertical bars of the handrail intersect the 
horizontal edges of the bricks of the wall behind. We 
masked these two parts of the image from the analysis. 

In total, 376 features were found by the selection 
algorithm and tracked. Figure 6c plots the tracks of 
some of the features for illustration. Notice the very 
jagged trajectories due to the vibrating motion of the 
hand-held camera. 

Figure 7 shows a front and a top view of the building 
as reconstructed by the factorization method. To render 
these figures for display, we triangulated the computed 
3D points into a set of small surface patches and 
mapped the pixel values in the first frame onto the 
resulting surface. The structure of the visible part of 

the building's three walls has clearly been reconstructed. 
In these figures, the left wall appears to bend somewhat 
on the fight where it intersects the middle wall. This 
occurred because the feature selector found features 
along the shadow of the roof just on the fight of the 
intersection of the two walls, rather than at the inter- 
section itself. Thus, the appearance of a bending wall 
is an artifact of the triangulation done for rendering. 

This experiment with an image stream taken out- 
doors with the jerky motion produced by a hand-held 
camera demonstrates that the factorization method does 
not require a smooth motion assumption. The identif- 
ication of false features, that is, of features that do not 
move rigidly with respect of the environment, remains 
an open problem that must be solved for a fully auton- 
omous system. An initial effort has been seen in (Boult 
& Brown 1991). 

5 Occlusions 

In reality, as the camera moves, features can appear 
and disappear from the image because of occlusions. 
Also, a feature-tracking method will not always suc- 
ceed in tracking features throughout the image stream. 
These phenomena are frequent enough to make a shape 
and motion computation method unrealistic if it can- 
not deal with them. 



146 Tomasi and Kanade 

Sequences with appearing and disappearing features 
result in a measurement matrix W which is only par- 
tially ftlled in. The factorization method introduced in 
section 3 cannot be applied directly. However, there is 
usually sufficient information in the stream to deter- 
mine all the camera positions and all the three-dimen- 
sional feature point coordinates. If  that is the case, we 
cannot only solve the shape and motion recovery prob- 
lem from the incomplete measurement matrix W, but 
we can even hallucinate the unknown entries of W by 

projecting the computed three-dimensional feature coor- 
dinates onto the computed camera positions, as shown 
in the following. 

5.1 Solution for Noise-Free Images 

Suppose that a feature point is not visible in a certain 
frame. If the same feature is seen often enough in other 
frames, its position in space should be recoverable. 
Moreover, if the frame in question includes enough 

(c) 

Fig. 6 The "House" stream: (a) four of the 180 frames, (b) the features automatically selected in the first frame, and (c) tracks of 60 features. 
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Pl P2 P3 P 

Co) 

F/g. 7. Shape results for the "House" stream: (a) front and (b) top 
view of the three walls with image intensities mapped onto the 
reconstructed surface. 

other features, the corresponding camera position 
should be recoverable as well. Then from point and 
camera positions thus recovered, we should also be able 
to reconstruct the missing image measurement. In fact, 
we have the following sufficient condition. 

Condition for Reconstruction: In the absence of 
noise, an unknown image measurement pair (u~, vfp) 
in f r amefcan  be reconstructed if pointp  is visible in 
at least three more frames fl,  ~ ,  f3, and if there are 
at least three more points p], P2, P3, that are visible 
in all the four frames f] ,  3~, f3, f. 

In figure 8, this means that the dotted entries must 
be known to reconstruct the question marks. This is 
equivalent to Ullman's result (Ullman 1979) that three 
views of four points determine structure and motion. 

f/ 

f2 

f 

F+fl 

F+f 2 

F+f 3 

F+f "- IF 

I |  

T 
? 

I 

F/g. & The reconstruction condition. If the dotted entries of the 
measurement matrix are known, the two unknown ones (question 
marks) can be hallucinated. 

In this subsection, we provide the reconstruction con- 
dition in our formalism and develop the reconstruction 
procedure. To this end, we notice that the rows and col- 
umns of the noise-free measurement matrix W can 

always be permuted so that fl  = Pl = 1, j~ = P2 = 
2, j~ = P3 = 3, f = p = 4. We can therefore suppose 
that u44 and 1,,44 are the only two unknown entries in 
the 8 x4 matrix 

[°l 
W =  V = 

Ull U12 U13 U14 

U21 U22 U23 U24 

/131 U32 //33 U34 

u41 u42 u43 ? 
VII V12 V13 1)14 

"1)21 V22 1,'23 V24 

V31 V32 V33 V34 

v41 v42 v43 ? 

Then, the factorization method can be applied to the 
first three rows of U and V, that is, to the 6 x4  submatrix 
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Ull /112 U13 U14 

U21 //22 U23 U24 

W6x  4 = u31 u32 u33 u34 
1)11 1)12 1)13 1)14 
v2] v22 v23 v24 
1)31 1)32 1)33 1)34 

to produce the partial translation and rotation sub- 
matrices 

a 1 - i l  r 
a 2 i T 

aa and R6× 3 = iF (18) 
t6x 1 = b l  j l  T 

b2 j r  
_ b 3  _ jT 

and the full-shape matrix 

S -- [$1 s'2 $3 s4] (19) 

such that 

W6× 4 : R6× 3 S + t6x 1 e4 T 

where e4 r = (1, 1, 1, 1). 
To complete the rotation solution, we need to com- 

pute the vectors i 4 and J4. However, a registration 
problem must be solved first. In fact, only three points 
are visible in the fourth frame, while equation (19) 
yields all four points in space. Since the factorization 
method computes the space coordinates with respect 
to the centroid of the points, we have Sl + s2 + s3 + 
s4 = 0, while the image coordinates in the fourth 
frame are measured with respect to the image centroid 
of just three observed points (1, 2, 3). Thus, before we 
can compute i4 and J4 we must make the two origins 
coincide by referring all cooruiaates to the centroid 

c = l ( s l  + s 2  + s3) 
3 

of the three points that are visible in all four frames. 
In the fourth frame, the projection of e has coordinates 

a,~ = 1 (u,u + U42 + U43) 
3 

b~ = 1 (1)41 -I- V42 d- V43 ) 
3 

so we can define the new coordinates 

s ~ = s p - c  for p =  1 , 2 , 3  

in space and 

Alternatively, one 

u,~p = U4p - a~ 
for p =  1 , 2 , 3  

=1)4v 

in the fourth frame. Then, i 4 and J4 are the solutions 
of the two 3 x3 systems 

(20) 
|T rsr [1)41 1)42 1)43] = ,14 t 1 ~ $3] 

derived from equation (5). The second equation in (18) 
and the solution to (20) yield the entire rotation matrix 
R, while shape is given by equation (19). 

The components a 4 and b4 of translation in the 
fourth frame with respect to the centroid of all four 
points can be computed by postmultiplying equation 
(8) by the vector ~/4 = (1, 1, 1, 0)r: 

W 174 : R S  114 -b  te4 r 174 

Since e4 r ~/4 = 3, we obtain 

t = 1 ( W  - R S )  74 (21) 
3 

In particular, rows 4 and 8 of this equation yield a4 
and b4. Notice that the unknown entries u44 and v44 
are multiplied by zeroes in equation (21). 

Now that both motion and shape are known, the 
missing entries u44, v~ of the measurement matrix W 
can be found by orthographic projection (equation (9)): 

U44 ---- i~ $4 "{" a4 

v44 = j4 r S4 + b4 

The procedure thus completed factors the full 6x4 sub- 
matrix of W and then reasons on the three points that 
are visible in all the frames to compute motion for the 
fourth frame. 

can start with the 8x3 submatrix 

W8× 3 

Ull U12 U13 
U21 U22 U23 
/131 U32 /d33 
/141 U42 U43 
Vll V12 1)13 
V21 V22 V23 
V31 V32 V33 
V41 V42 1"43 

(22) 

In this case we first compute the full translation and 
rotation submatrices, and then from these we obtain 
the shape coordinates and the unknown entry of W for 
full reconstruction. 
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In summary, the full motion and shape solution can 
be found in either of the following ways: 
1. row-wise extension: factor W6x 4 to find a partial 

motion and full shape solution, and propagate it to 
include motion for the remaining frame (equations 
(20)). 

2. column-wise extension: factor W8×3 to fred a full 
motion and partial shape solution, and propagate it 
to include the remaining feature point. 

5. 2 Solution in the Presence of Noise 

The solution-propagation method introduced in the 
previous subsection can be extended to 2FxP measure- 
ment matrices with F _> 4 and P _> 4. In fact, the only 
difference is that the propagation equations (20) for 
row-wise extension and the analogous ones for column- 
wise extension become overconswained. If the measure- 
ment matrix W is noisy, this redundancy is beneficial, 
since equations (20) can be solved in the least-square- 
error sense, and the effect of noise is reduced. 

In the general case of a noisy 2FxP  matrix W the 
solution-propagation method can be summarized as 
follows. A possibly large, full subblock of W is first 
decomposed by factorization. Then, this initial solu- 
tion is grown one row or one column at a time by solv- 
ing systems analogous to those in (20) in the least- 
square-error sense. 

However, because of noise, the order in which the 
rows and columns of W are incorporated into the solu- 
tion can affect the exact values of the final motion and 
shape solution. Consequently, once the solution has 
been propagated to the entire measurement matrix W, 
it may be necessary to refine the results with a steepest- 
descent minimization of the residue 

IIw - R S  - teerll 
(see equation (8)). 

There remain the two problems of how to choose 
the initial full subblock to which factorization is ap- 
plied and in what order to grow the solution. In fact, 
however, because of the final refinement step, neither 
choice is critical as long as the initial matrix is large 
enough to yield a good starting point. We illustrate this 
point in section 6. 

6 M o r e  E x p e r i m e n t s  

We now test the propagation method with image streams 
which include substantial occlusions. We first use an 

image stream taken in a laboratory. Then, we 
demonstrate the robustness of the factorization method 
with another stream taken with a hand-held amateur 
camera. 

61 "Ball" Image Stream 

A ping-pong ball with black dots marked on its sur- 
face is rotated 450 degrees in front of the camera, so 
features appear and disappear. The rotation between 
adjacent frames is 2 degrees, so the stream is 226 
frames long. Figure 9a shows the first frame of the 
stream, with the automatically selected features 
overlaid. 

The feature tracker looks for new features every 30 
frames (60 degrees) of rotation. In this way, features 
that disappear on one side around the ball are replac- 
ed by new ones that appear on the other side. Figure 
9b shows the tracks of 60 features, randomly chosen 
among the total of 829 found by the selector. 

If all measurements are collected into the noisy 
measurement matrix W, the U and V parts of W have 
the same fill pattern: if the x coordinate of a measure- 
ment is known, so is its y coordinate. Figure 9c shows 
thisfill matrix for our experiment. This matrix has the 
same size as either U or V, that is, b"x P. A column corre- 
sponds to a feature point, and a row to a frame. Shaded 
regions denote known entries. The fill matrix shown 
has 226 x 829 = 187354 entries, of which 30185 
(about 16 percent) are known. 

To start the motion and shape computation, the 
algorithm finds a large full submatrix by applying sim- 
ple heuristics based on typical patterns of the fill matrix. 
The choice of the starting matrix is not critical, as long 
as it leads to a reliable initialization of the motion and 
shape matrices. The initial solution is then grown by 
repeatedly solving overconstrained versions of a linear 
system similar to (20) to add new rows, and of the 
analogous system for the colunm-wise extension to add 
new columns. The rows and columns to add are selected 
so as to maximize the redundancy of the linear systems. 
Eventually, all of the motion and shape values are deter- 
mined. As a result, the' unknown 84 percent of the 
measurement matrix can be hallucinated from the 
known 16 percent. 

Figure 10 shows two views of the final shape results, 
taken from the top and from the side. The missing 
features at the bottom of the ball in the side view cor- 
respond to the part of the ball that remained always in- 
visible because it rested on the rotating platform. 



150 Tomasi and Kanade 

(a) (b) 

:~' ( ~ f i!l Ilit f • > ~ I ' :~  ''~ 

(c) 

Fig. 9. The " B a l l "  s t ream : (a) the first f rame,  (b) t racks of  6 0  features, and  (e) the fill mat r ix  (shaded entries are known  image  coordinates).  

To display the motion results, we look at the if and 
jf vectors directly. We recall that these unit vectors 
point along the rows and columns of the image frames 
f i n  1, . . . ,  E Because the ball rotates around a fixed 
axis, both if and jf  should sweep a cone in space, as 
shown in figure lla. The tips of if and jf should 
describe two circles in space, centered along the axis 
of rotation. Figure llb shows two views of these vector 
tips, from the top and from the side. Those trajectories 
indicate that the motion recovery was done correctly. 
Notice the double arc in the top part of figure llb cor- 
responding to more than 360 degrees rotation. If  the 
motion reconstruction were perfect, the two arcs would 
be indistinguishable. 

6.2 The "Hand" Image Stream 

In this subsection we describe an experiment with a 
natural scene including occlusion as a dominant phe- 
nomenon. A hand holds a cup and rotates it by about 
ninety degrees in front of the camera mounted on a fixed 
stand. Figure 12a shows four out of the 240 frames of 
the stream. 

An additional need in this experiment is figure/ 
ground segmentation. Since the camera was fixed, how- 
ever, this problem is easily solved: features that do not 
move belong to the background. Also, the stream in- 
cludes some nonrigid motion: as the hand turns, the 
configuration and relative position of the fingers 
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Fig. 10. S h a p e  r e s u l t s  f o r  t h e  " B a l l "  s t r e a m :  ( a )  t op  a n d  (b)  s i d e  v i e w .  
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Fig. 11. M o t i o n  r e su l t s  f o r  t h e  " B a l l "  s t r e a m :  ( a )  b e c a u s e  t h e  b a l l  r o t a t e s  a r o u n d  a f i x e d  a x i s ,  t h e  t w o  o r t h o g o n a l  u n i t  v e c t o r s  i f  a n d  j f  a l o n g  

r o w s  a n d  c o l u m n s  o f  t h e  i m a g e  s e n s o r  s w e e p  t w o  c o n e s  i n  s p a c e ;  (b)  t op  a n d  s i d e  v i e w s  o f  t h e  c o m p u t e d  v e c t o r s  iy a n d  jy. 
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(a) (b) 
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t t.i i 

I i 5 :  ¸ 

(c) t l !!i 
Fig. 12. The "Hand" stream: (a) four of the 240 frames, (b) tracks of 60 features, and (c) the fill matrix (shaded entries are known image 
coordinates). 

changes slightly. This effect, however, is small and did 
not affect the results appreciably. 

A total of 207 features was selected. Figure 12b 
shows the image trajectory of 60 randomly selected 
features. Occlusions were marked by hand in this ex- 
periment. The fill matrix of figure 12c illustrates the 
occlusion pattern. 

Figure 13 shows a front and a top view of the cup 
and the visible fingers as reconstructed by the propaga- 
tion method. The shape of the cup was recovered, as 
well as the rough shape of the fingers. These render- 
ings were obtained, as for the "House" image stream 
in subsection 4.1, by triangulating the tracked feature 

points and mapping pixel values onto the resulting 
surface. 

7 Conclusions 

The rank theorem, which is the basis of the factoriza- 
tion method, is both surprising and powerful. It is sur- 
prising because it states that the correlation among 
measurements made in an image stream under orthog- 
raphy has a simple expression no matter what the 
camera motion is and no matter what the shape o f  an 
object is, thus making motion or surface assumptions 
(such as smooth, constant, linear, planar and quadratic) 
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(a) (b) 

Fig. 13. Shape results for the "Hand" stream: (a) front and Co) top view of the cup and fingers with image intensities mapped onto the 
reconstructed surface. 

fundamentally superfluous. The theorem is powerful 

because the rank theorem leads to factorization of  the 
measurement matrix into shape and motion in a well- 
behaved and stable manner. 

The factorization me thod  exploits the redundancy 

of  the measurement matr ix to counter the noise sensi- 
tivity of structure-from-motion and allows using very 
short interframe camera motion to simplify feature 
tracking. The structural insight into shape-from-motion 
afforded by the rank theorem led to a systematic pro- 

cedure to solve the occlusion problem within the fac- 
torization method. The experiments in the lab demon- 
strate the high accuracy of the method, and the out- 

door experiments show its robustness. 
The rank theorem is strongly related to Ullman's 

twelve-year-old result that three pictures of four points 

determine structure and motion under orthography. 
Thus, in a sense, the theoretical foundation of our re- 
sult has been  around for a long time. The factorization 
method evolves the applicability of that foundation from 

mathematical  images to actual noisy image streams. 
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