

Projective Geometry and Camera Models

Computer Vision
CS 143
Brown

James Hays

Slides from Derek Hoiem,
Alexei Efros, Steve Seitz, and David Forsyth

Administrative Stuff

- My Office hours, CIT 375
- Monday and Friday 2-3
- TA Office hours, CIT 219
- Sunday 4-6
- Monday 6-8
- Monday 8-10
- Tuesday 6-8
- Thursday 6-8
- Project 1 is out

Previous class: Introduction

- Overview of vision, examples of state of art, preview of projects

What do you need to make a camera from scratch?

Today's class

Mapping between image and world coordinates

- Pinhole camera model
- Projective geometry
- Vanishing points and lines
- Projection matrix

Today's class: Camera and World Geometry

Image formation

Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

Pinhole camera

Idea 2: add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture

Pinhole camera

$\mathrm{f}=$ focal length
$c=$ center of the camera

Camera obscura: the pre-camera

- Known during classical period in China and Greece (e.g. Mo-Ti, China, 470BC to 390BC)

Illustration of Camera Obscura

Freestanding camera obscura at UNC Chapel Hill

Camera Obscura used for Tracing

Lens Based Camera Obscura, 1568

First Photograph

Oldest surviving photograph

- Took 8 hours on pewter plate

Joseph Niepce, 1826

Photograph of the first photograph

Stored at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes

Dimensionality Reduction Machine (3D to 2D)

3D world
2D image

Point of observation

Projection can be tricky...

Projection can be tricky...

Projective Geometry

What is lost?

- Length

Length is not preserved

Figure by David Forsyth

Projective Geometry

What is lost?

- Length
- Angles

Projective Geometry

What is preserved?

- Straight lines are still straight

Vanishing points and lines

Parallel lines in the world intersect in the image at a "vanishing point"

Vanishing points and lines

Vanishing points and lines

Projection: world coordinates \rightarrow image coordinates

Homogeneous coordinates

Conversion

Converting to homogeneous coordinates

$$
\begin{array}{cc}
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] & (x, y, z) \Rightarrow\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \\
\begin{array}{cc}
\text { homogeneous image } & \text { homogeneous scene } \\
\text { coordinates } & \text { coordinates }
\end{array}
\end{array}
$$

Converting from homogeneous coordinates

$$
\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w) \quad\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right] \Rightarrow(x / w, y / w, z / w)
$$

Homogeneous coordinates

Invariant to scaling

$$
\begin{gathered}
\qquad\left[\begin{array}{c}
x \\
y \\
k
\end{array}\right]=\left[\begin{array}{c}
k x \\
k y \\
k w
\end{array}\right]
\end{gathered} \underset{\text { Comogeneous }}{\left[\begin{array}{c}
{\left[\begin{array}{c}
k x \\
k w \\
\frac{k y}{k w}
\end{array}\right]}
\end{array}=\left[\begin{array}{c}
\frac{x}{w} \\
\frac{y}{w}
\end{array}\right]\right.}
$$

Point in Cartesian is ray in Homogeneous

Projection matrix

$\mathbf{x}=\mathbf{K}\left[\begin{array}{ll}\mathrm{R} & \mathbf{t}\end{array}\right] \mathbf{X}$
x: Image Coordinates: $(u, v, 1)$
K: Intrinsic Matrix (3x3)
R: Rotation (3x3)
t: Translation (3x1)
X: World Coordinates: (X,Y,Z,1)

Interlude: why does this matter?

Relating multiple views

Object Recognition (CVPR 2006)

Inserting photographed objects into images (SIGGRAPH 2007)

Original

Created

Projection matrix

Intrinsic Assumptions Extrinsic Assumptions

- Unit aspect ratio
- No rotation
- Optical center at $(0,0)$
- Camera at $(0,0,0)$
- No skew

$$
\mathbf{X}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right] \mathbf{X} \Rightarrow w\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc:c}
f & f & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Remove assumption: known optical center

Intrinsic Assumptions Extrinsic Assumptions

- Unit aspect ratio
- No skew
- No rotation
- Camera at (0,0,0)

$$
\mathbf{X}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right] \mathbf{X} \Rightarrow w\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc:c}
1 f & 0 & u_{0} & 0 \\
0 & f & v_{0} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Remove assumption: square pixels

$$
\begin{aligned}
& \begin{array}{l}
\text { Intrinsic Assumptions } \\
\bullet \text { - No skew }
\end{array} \\
& \begin{array}{l}
\text { Extrinsic Assumptions } \\
\\
\\
\bullet \\
\bullet
\end{array} \\
& \mathbf{~} \text { No rotation }
\end{aligned}
$$

Remove assumption: non-skewed pixels

$$
\begin{aligned}
& \text { Intrinsic Assumptions } \begin{array}{l}
\text { Extrinsic Assumptions } \\
\\
\\
\\
\bullet
\end{array} \\
& \mathbf{~} \text { No rotation }
\end{aligned}
$$

Note: different books use different notation for parameters

Oriented and Translated Camera

Allow camera translation

Intrinsic Assumptions Extrinsic Assumptions

- No rotation

$$
\mathbf{X}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{t}
\end{array}\right] \mathbf{X} \Rightarrow w\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{lll}
\alpha & 0 & u_{0} \\
0 & \beta & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise:

Allow camera rotation

$$
\begin{aligned}
& \mathbf{x}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \mathbf{X} \\
& w\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{lll}
\alpha & s & u_{0} \\
0 & \beta & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
r_{11} & r_{12} & r_{13} & t_{x} \\
r_{21} & r_{22} & r_{23} & t_{y} \\
r_{31} & r_{32} & r_{33} & t_{z}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
\end{aligned}
$$

Degrees of freedom

$\mathbf{x}=\mathbf{K}\left[\begin{array}{ll}\mathrm{R} & \mathbf{t}\end{array}\right] \mathbf{X}$
\downarrow

$$
w\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\alpha & s & u_{0} \\
0 & \beta & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
r_{11} & r_{12} & r_{13} & t_{x} \\
r_{21} & r_{22} & r_{23} & t_{y} \\
r_{31} & r_{32} & r_{33} & t_{z}
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Orthographic Projection

- Special case of perspective projection
- Distance from the COP to the image plane is infinite

- Also called "parallel projection"
- What's the projection matrix?

$$
w\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Field of View (Zoom, focal length)

From London and Upton

Beyond Pinholes: Radial Distortion

No Distortion

Barrel Distortion

Pincushion Distortion

Corrected Barrel Distortion

Things to remember

- Vanishing points and vanishing lines

- Pinhole camera model and camera projection matrix

$$
\mathrm{x}=\mathrm{K}\left[\begin{array}{ll}
\mathrm{R} & \mathrm{t}
\end{array}\right] \mathrm{X}
$$

- Homogeneous coordinates

$$
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Next class

- Light, color, and sensors

