

From the 3D to 2D

Extract useful building blocks

The big picture...

Image Filtering

Computer Vision
James Hays, Brown

Next three classes: three views of filtering

- Image filters in spatial domain
- Filter is a mathematical operation of a grid of numbers
- Smoothing, sharpening, measuring texture
- Image filters in the frequency domain
- Filtering is a way to modify the frequencies of images
- Denoising, sampling, image compression
- Templates and Image Pyramids
- Filtering is a way to match a template to the image
- Detection, coarse-to-fine registration

Image filtering

- Image filtering: compute function of local neighborhood at each position
- Really important!
- Enhance images
- Denoise, resize, increase contrast, etc.
- Extract information from images
- Texture, edges, distinctive points, etc.
- Detect patterns
- Template matching

Example: box filter

Slide credit: David Lowe (UBC)

Image filtering

$$
\mathrm{g}[\cdot, \cdot] \frac{1}{9} \frac{1}{9} \frac{1}{\frac{1}{9}} \begin{gathered}
1 \\
\hline
\end{gathered}
$$

$$
f[., .] \quad h[., .]
$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$
h[m, n]=\sum_{k, l} g[k, l] f[m+k, n+l]
$$

Image filtering

$f[. .$,

$h[. .$,

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0

	0	10							

$$
h[m, n]=\sum_{k, l} g[k, l] f[m+k, n+l]
$$

Image filtering

$$
\mathrm{g}[\cdot, \cdot] \frac{1}{9} \frac{1}{9} \frac{1}{\frac{1}{9}} \begin{gathered}
1 \\
\hline
\end{gathered}
$$

$f[. .$,

$h[. .$,

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0

	0	10	20						

$$
h[m, n]=\sum_{k, l} g[k, l] f[m+k, n+l]
$$

Image filtering

$f[. .$,

$h[.$, .]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30					

$$
h[m, n]=\sum_{k, l} g[k, l] f[m+k, n+l]
$$

Image filtering

$f[. .$,

$h[.,$.

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30	30				

$$
h[m, n]=\sum_{k, l} g[k, l] f[m+k, n+l]
$$

Image filtering

$f[. .$,

$h[.,$.

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

-	${ }^{\circ}$	${ }^{20}$	${ }^{30}$	${ }^{\circ}$		
			$?$			

$$
h[m, n]=\sum_{k, l} g[k, l] f[m+k, n+l]
$$

Image filtering

$$
\mathrm{g}[\cdot, \cdot] \frac{1}{9} \frac{1}{9} \frac{1}{\frac{1}{9}} \begin{gathered}
1 \\
\hline
\end{gathered}
$$

$f[. .$,

$h[.,$.

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30	30				
						?			
				50					

$$
h[m, n]=\sum_{k, l} g[k, l] f[m+k, n+l]
$$

Image filtering

$$
\mathrm{g}[\cdot \cdot \cdot]
$$

$f[. .$,

$h[.,$.

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	60	90	90	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	10	20	30	30	30	30	20	10	
	10	10	10	0	0	0	0	0	

$$
h[m, n]=\sum_{k, l} g[k, l] f[m+k, n+l]
$$

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

g[•, $]$

Slide credit: David Lowe (UBC)

Smoothing with box filter

Practice with linear filters

0	0	0
0	1	0
0	0	0

$?$

Original

Practice with linear filters

Original

0	0	0
0	1	0
0	0	0

Filtered
(no change)

Practice with linear filters

0	0	0
0	0	1
0	0	0

$?$

Original

Practice with linear filters

Original

0	0	0
0	0	1
0	0	0

Shifted left
By 1 pixel

Practice with linear filters

(Note that filter sums to 1)
?

Practice with linear filters

Original

0	0	0
0	2	0
0	0	0

Sharpening filter

- Accentuates differences with local average

Sharpening

Other filters

Vertical Edge (absolute value)

Other filters

Horizontal Edge (absolute value)

Filtering vs. Convolution

- 2d filtering $\mathrm{g}=$ filter $\mathrm{f}=\mathrm{image}$

$$
\begin{gathered}
-\mathrm{h}=\mathrm{filter} 2(\mathrm{~g}, \mathrm{f}) ; \text { or } \\
\text { h}=\text { imfilter }(\mathrm{f}, \mathrm{~g}) ;
\end{gathered}
$$

$$
h[m, n]=\sum_{k, l} g[k, l] f[m+k, n+l]
$$

- 2d convolution
- h=conv2 (g, f);

$$
h[m, n]=\sum_{k, l} g[k, l] f[m-k, n-l]
$$

Key properties of linear filters

Linearity:

filter $\left(\mathrm{f}_{1}+\mathrm{f}_{2}\right)=$ filter $\left(\mathrm{f}_{1}\right)$ + filter $\left(\mathrm{f}_{2}\right)$

Shift invariance: same behavior regardless of pixel location

```
filter(shift(f)) = shift(filter(f))
```

Any linear, shift-invariant operator can be represented as a convolution

More properties

- Commutative: $a^{*} b=b^{*} a$
- Conceptually no difference between filter and signal
- But particular filtering implementations might break this equality
- Associative: $a^{*}\left(b^{*} c\right)=\left(a^{*} b\right)^{*} c$
- Often apply several filters one after another: $\left(\left(\left(a * b_{1}\right) * b_{2}\right) * b_{3}\right)$
- This is equivalent to applying one filter: $\mathrm{a} *\left(b_{1} * b_{2} * b_{3}\right)$
- Distributes over addition: $a^{*}(b+c)=\left(a^{*} b\right)+\left(a^{*} c\right)$
- Scalars factor out: $k a^{*} b=a^{*} k b=k\left(a^{*} b\right)$
- Identity: unit impulse $e=[0,0,1,0,0]$, $a^{*} e=a$

Important filter: Gaussian

- Weight contributions of neighboring pixels by nearness

0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003
$5 \times 5, \sigma=1$				

$$
G_{\sigma}=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{\left(x^{2}+y^{2}\right)}{2 \sigma^{2}}}
$$

Smoothing with Gaussian filter

Smoothing with box filter

Gaussian filters

- Remove "high-frequency" components from the image (low-pass filter)
- Images become more smooth
- Convolution with self is another Gaussian
- So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have
- Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width ov2
- Separable kernel
- Factors into product of two 1D Gaussians

Separability of the Gaussian filter

$$
\begin{aligned}
\mathcal{G}_{\sigma}(x, y) & =\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \\
& =\left(\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{\left.-\frac{x^{2}}{2 \sigma^{2}}\right)\left(\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{-\frac{y^{2}}{2 \sigma^{2}}}\right)}\right.
\end{aligned}
$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Separability example

Followed by convolution
along the remaining column:

Separability

- Why is separability useful in practice?

Some practical matters

Practical matters

How big should the filter be?

- Values at edges should be near zero
- Rule of thumb for Gaussian: set filter half-width to about 3σ

Practical matters

- What about near the edge?
- the filter window falls off the edge of the image
- need to extrapolate
- methods:
- clip filter (black)
- wrap around
- copy edge
- reflect across edge

Practical matters

- methods (MATLAB):
- clip filter (black): imfilter(f, g, 0)
- wrap around: imfilter(f, g, 'circular’)
- copy edge: imfilter(f, g, 'replicate')
- reflect across edge: imfilter(f, g, 'symmetric')

Practical matters

- What is the size of the output?
- MATLAB: filter2(g, f, shape)
- shape = 'full': output size is sum of sizes of f and g
- shape = 'same': output size is same as f
- shape = 'valid': output size is difference of sizes of f and g

Median filters

- A Median Filter operates over a window by selecting the median intensity in the window.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?

Comparison: salt and pepper noise

Mean

Gaussian

Median

Project 1: Hybrid Images

Take-home messages

- Linear filtering is sum of dot product at each position
- Can smooth, sharpen, translate (among many other uses)

- Be aware of details for filter size, extrapolation, cropping

Practice questions

1. Write down a 3×3 filter that returns a positive value if the average value of the 4 -adjacent neighbors is less than the center and a negative value otherwise
2. Write down a filter that will compute the gradient in the x-direction:
```
gradx(y,x) = im(y,x+1)-im(y,x) for each x, y
```


Practice questions

3. Fill in the blanks: $\begin{aligned} & \text { a) }=D * B \\ & \text { b) } \bar{A}=D *- \\ & \text { c) } F=\bar{D} * \bar{x} \\ & \text { d) } \quad=D * \bar{D}\end{aligned}$

Filtering Operator

Next class: Thinking in Frequency

