

Slide credit Fei Fei Li

Extract useful building blocks

The big picture...

09/11/2013

Image Filtering

Computer Vision James Hays, Brown

Many slides by Derek Hoiem

Next three classes: three views of filtering

- Image filters in spatial domain
 - Filter is a mathematical operation of a grid of numbers
 - Smoothing, sharpening, measuring texture
- Image filters in the frequency domain

 Filtering is a way to modify the frequencies of images
 Denoising, sampling, image compression
- Templates and Image Pyramids
 - Filtering is a way to match a template to the image
 - Detection, coarse-to-fine registration

- Image filtering: compute function of local neighborhood at each position
- Really important!
 - Enhance images
 - Denoise, resize, increase contrast, etc.
 - Extract information from images
 - Texture, edges, distinctive points, etc.
 - Detect patterns
 - Template matching

Example: box filter

Slide credit: David Lowe (UBC)

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

h[.,.]

 $h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$

1	1	1	1
	1	1	1
9	1	1	1

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

h[.,.]

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

1	1	1	1	
	1	1	1	
9	1	1	1	

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

h[.,.]

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

1	1	1	1
<u>-</u>	1	1	1
9	1	1	1

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

h[.,.]

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

1	1	1	1
	1	1	1
9	1	1	1

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0 10 20 30 30

h[.,.]

 $h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$

1	1	1	1
	1	1	1
9	1	1	1

f[.,.]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

10 0 20 30 30 ?

h[.,.]

 $h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$

1	1	1	1
	1	1	1
9	1	1	1

f[.,.]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30			
					?		
			50				

h[.,.]

 $h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$

f[.,.]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

h[.,.]

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

 $h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

Smoothing with box filter

 0
 0
 0

 0
 1
 0

 0
 0
 0

?

Original

Original

0	0	0
0	1	0
0	0	0

Filtered (no change)

Original

0	0	0
0	0	1
0	0	0

?

Original

0	0	0
0	0	1
0	0	0

Shifted left By 1 pixel

(Note that filter sums to 1)

Original

0	0	0	
0	2	0	
0	0	0	

Original

Sharpening filter

- Accentuates differences with local average

Sharpening

before

after

Other filters

1	0	-1
2	0	-2
1	0	-1

Sobel

Vertical Edge (absolute value)

Other filters

1	2	1
0	0	0
-1	-2	-1

Sobel

Horizontal Edge (absolute value)

Filtering vs. Convolution

• 2d filtering $\begin{array}{l} \text{g=filter } f=\text{image} \\ -h=\text{filter2}(g,f); \text{ or} \\ h=\text{imfilter}(f,g); \\ h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \end{array}$

• 2d convolution

-h=conv2(g,f);
$$h[m,n] = \sum_{k,l} g[k,l] f[m-k,n-l]$$

Key properties of linear filters

Linearity:

filter($f_1 + f_2$) = filter(f_1) + filter(f_2)

Shift invariance: same behavior regardless of pixel location

filter(shift(f)) = shift(filter(f))

Any linear, shift-invariant operator can be represented as a convolution

More properties

- Commutative: *a* * *b* = *b* * *a*
 - Conceptually no difference between filter and signal
 - But particular filtering implementations might break this equality
- Associative: *a* * (*b* * *c*) = (*a* * *b*) * *c*
 - Often apply several filters one after another: $((a * b_1) * b_2) * b_3)$
 - This is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$
- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k (a * b)
- Identity: unit impulse *e* = [0, 0, 1, 0, 0],
 a * *e* = *a*

Important filter: Gaussian

• Weight contributions of neighboring pixels by nearness

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

Slide credit: Christopher Rasmussen

Smoothing with Gaussian filter

.

Smoothing with box filter

Gaussian filters

- Remove "high-frequency" components from the image (low-pass filter)
 - Images become more smooth
- Convolution with self is another Gaussian
 - So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have
 - Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width σ V2
- *Separable* kernel
 - Factors into product of two 1D Gaussians

Separability of the Gaussian filter

$$\begin{aligned} \mathsf{G}_{\sigma}(x,y) &= \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}} \\ &= \left(\frac{1}{\sqrt{2\pi\sigma}} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi\sigma}} \exp^{-\frac{y^2}{2\sigma^2}}\right) \end{aligned}$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Separability example

2D convolution (center location only)

The filter factors into a product of 1D filters:

Perform convolution along rows:

3

5

3

5

6

Followed by convolution along the remaining column:

Separability

• Why is separability useful in practice?

Some practical matters

How big should the filter be?

- Values at edges should be near zero
- Rule of thumb for Gaussian: set filter half-width to about 3 σ

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

- methods (MATLAB):
 - clip filter (black): imfilter(f, g, 0)
 - wrap around: imfilter(f, g, 'circular')
 - copy edge: imfilter(f, g, 'replicate')
 - reflect across edge: imfilter(f, g, 'symmetric')

- What is the size of the output?
- MATLAB: filter2(g, f, shape)
 - shape = 'full': output size is sum of sizes of f and g
 - shape = 'same': output size is same as f
 - shape = 'valid': output size is difference of sizes of f and g

Median filters

- A Median Filter operates over a window by selecting the median intensity in the window.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?

Comparison: salt and pepper noise

3x3

Mean

Gaussian

Median

A la

5x5

7x7

Project 1: Hybrid Images

Gaussian Filter!

A. Oliva, A. Torralba, P.G. Schyns, <u>"Hybrid Images,"</u> SIGGRAPH 2006

Take-home messages

- Linear filtering is sum of dot product at each position
 - Can smooth, sharpen, translate (among many other uses)

 $\frac{1}{9}$

• Be aware of details for filter size, extrapolation, cropping

Practice questions

 Write down a 3x3 filter that returns a positive value if the average value of the 4-adjacent neighbors is less than the center and a negative value otherwise

2. Write down a filter that will compute the gradient in the x-direction:

gradx(y,x) = im(y,x+1) - im(y,x) for each x, y

Practice questions

3. Fill in the blanks:

Filtering Operator

Next class: Thinking in Frequency

