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Next three classes: three views of filtering 

 
• Image filters in spatial domain 

– Filter is a mathematical operation of a grid of numbers 
– Smoothing, sharpening, measuring texture 

 
• Image filters in the frequency domain 

– Filtering is a way to modify the frequencies of images 
– Denoising, sampling, image compression 

 

• Templates and Image Pyramids 
– Filtering is a way to match a template to the image 
– Detection, coarse-to-fine registration 



Image filtering 

 

• Image filtering: compute function of local 
neighborhood at each position 

 

• Really important! 

– Enhance images 
• Denoise, resize, increase contrast, etc. 

– Extract information from images 
• Texture, edges, distinctive points, etc. 

– Detect patterns 
• Template matching 
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Example: box filter 
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What does it do? 

• Replaces each pixel with 

an average of its 

neighborhood 

 

• Achieve smoothing effect 

(remove sharp features) 
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Box Filter 



Smoothing with box filter 



Practice with linear filters 
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Practice with linear filters 
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Practice with linear filters 
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Practice with linear filters 
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Practice with linear filters 
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Practice with linear filters 
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Sharpening filter 

- Accentuates differences with local 

average 

Source: D. Lowe 



Sharpening 

Source: D. Lowe 



Other filters 
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Filtering vs. Convolution 

• 2d filtering 
– h=filter2(g,f); or  

h=imfilter(f,g); 

 

 

 

• 2d convolution 
– h=conv2(g,f); 
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f=image g=filter 
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Key properties of linear filters 

 

Linearity:  
filter(f1 + f2) = filter(f1) + filter(f2) 

 

Shift invariance: same behavior regardless of 
pixel location 
filter(shift(f)) = shift(filter(f)) 

 

Any linear, shift-invariant operator can be 
represented as a convolution 

 Source: S. Lazebnik 



More properties 
• Commutative: a * b = b * a 

– Conceptually no difference between filter and signal 

– But particular filtering implementations might break this equality 

 

• Associative: a * (b * c) = (a * b) * c 
– Often apply several filters one after another: (((a * b1) * b2) * b3) 

– This is equivalent to applying one filter: a * (b1 * b2 * b3) 

 

• Distributes over addition: a * (b + c) = (a * b) + (a * c) 

 

• Scalars factor out: ka * b = a * kb = k (a * b) 

 

• Identity: unit impulse e = [0, 0, 1, 0, 0], 
a * e = a 
 

Source: S. Lazebnik 



• Weight contributions of neighboring pixels by nearness 
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Slide credit: Christopher Rasmussen  

Important filter: Gaussian 



Smoothing with Gaussian filter 



Smoothing with box filter 



Gaussian filters 

• Remove “high-frequency” components from the 
image (low-pass filter) 

– Images become more smooth 

• Convolution with self is another Gaussian 

– So can smooth with small-width kernel, repeat, and 
get same result as larger-width kernel would have 

– Convolving two times with Gaussian kernel of width σ 
is same as convolving once with kernel of width  σ√2  

• Separable kernel 

– Factors into product of two 1D Gaussians 

Source: K. Grauman 



Separability of the Gaussian filter 

 

Source: D. Lowe 



Separability example 

* 

* 

= 

= 

2D convolution 

(center location only) 

Source: K. Grauman 

The filter factors 

into a product of 1D 

filters: 

Perform convolution 

along rows: 

Followed by convolution 

along the remaining column: 



Separability 

• Why is separability useful in practice? 



Some practical matters 

 



How big should the filter be? 
• Values at edges should be near zero 

• Rule of thumb for Gaussian: set filter half-width to 
about 3 σ 

 

Practical matters 



Practical matters 

• What about near the edge? 

– the filter window falls off the edge of the image 

– need to extrapolate 

– methods: 

• clip filter (black) 

• wrap around 

• copy edge 

• reflect across edge 

Source: S. Marschner 



Practical matters 

 

 

 

– methods (MATLAB): 

• clip filter (black):  imfilter(f, g, 0) 

• wrap around: imfilter(f, g, ‘circular’) 

• copy edge:   imfilter(f, g, ‘replicate’) 

• reflect across edge:  imfilter(f, g, ‘symmetric’) 

Source: S. Marschner 
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Practical matters 

• What is the size of the output? 

• MATLAB: filter2(g, f, shape) 

– shape = ‘full’: output size is sum of sizes of f and g 

– shape = ‘same’: output size is same as f 

– shape = ‘valid’: output size is difference of sizes of f and g  

f 

g g 

g g 

f 

g g 

g g 

f 

g g 

g g 

full same valid 

Source: S. Lazebnik 
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Median filters 

• A Median Filter operates over a window by 
selecting the median intensity in the window. 

• What advantage does a median filter have over 
a mean filter? 

• Is a median filter a kind of convolution? 

 

Slide by Steve Seitz 



© 2006 Steve Marschner • 46 

Comparison: salt and pepper noise 

Slide by Steve Seitz 



Project 1: Hybrid Images 

Gaussian Filter! 

Laplacian Filter! 

 A. Oliva, A. Torralba, P.G. Schyns,  
“Hybrid Images,” SIGGRAPH 2006 

Gaussian unit impulse Laplacian of Gaussian 

http://cvcl.mit.edu/hybridimage.htm


Take-home messages 

 

• Linear filtering is sum of dot 
product at each position 

– Can smooth, sharpen, translate 
(among many other uses) 

 
 

 

• Be aware of details for filter size, 
extrapolation, cropping 
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Practice questions 

1. Write down a 3x3 filter that returns a positive 
value if the average value of the 4-adjacent 
neighbors is less than the center and a 
negative value otherwise 

 

2. Write down a filter that will compute the 
gradient in the x-direction: 

 gradx(y,x) = im(y,x+1)-im(y,x) for each x, y 

  



Practice questions 

3.  Fill in the blanks: 
a) _ = D * B  

b) A = _ * _ 

c) F = D * _ 

d) _ = D * D 

 

A 

B 

C 

D 

E 

F 

G 

H I 

Filtering Operator 



Next class: Thinking in Frequency 

 


