Templates, Image Pyramids, and Filter Banks

Computer Vision

James Hays, Brown

Slides: Hoiem and others

Reminder

• Project 1 due Friday

Fourier Bases

Teases away fast vs. slow changes in the image.

This change of basis is the Fourier Transform

Fourier Bases

in Matlab, check out: imagesc(log(abs(fftshift(fft2(im)))));

Man-made Scene

Can change spectrum, then reconstruct

Low and High Pass filtering

Sinc Filter

• What is the spatial representation of the hard cutoff in the frequency domain?

Frequency Domain

Spatial Domain

Review

1. Match the spatial domain image to the Fourier magnitude image

Ε

D

Today's class

• Template matching

• Image Pyramids

• Filter banks and texture

Template matching

- Goal: find sin image
- Main challenge: What is a good similarity or distance measure between two patches?
 - Correlation
 - Zero-mean correlation
 - Sum Square Difference
 - Normalized Cross
 Correlation

- Goal: find I in image
- Method 0: filter the image with eye patch $h[m,n] = \sum g[k,l] f[m+k,n+l]$

f = image g = filter

What went wrong?

Input

Filtered Image

- Goal: find I in image
- Method 1: filter the image with zero-mean eye $h[m,n] = \sum_{k=l} (f[k,l] - \bar{f}) \underbrace{(g[m+k,n+l])}_{\text{mean of f}}$

Input

Filtered Image (scaled)

Thresholded Image

- Goal: find 💽 in image
- Method 2: SSD $h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2$

Input

1- sqrt(SSD)

Thresholded Image

• Goal: find 💽 in image

• Method 2: SSD $h[m,n] = \sum (g[k,l] - f[m+k,n+l])^2$

k,l

Input

1- sqrt(SSD)

What's the potential downside of SSD?

- Goal: find I in image
- Method 3: Normalized cross-correlation

$$h[m,n] = \frac{\sum_{k,l} (g[k,l] - \overline{g})(f[m-k,n-l] - \overline{f}_{m,n})}{\left(\sum_{k,l} (g[k,l] - \overline{g})^2 \sum_{k,l} (f[m-k,n-l] - \overline{f}_{m,n})^2\right)^{0.5}}$$

Matlab: normxcorr2(template, im)

- Goal: find 💽 in image
- Method 3: Normalized cross-correlation

Input

Normalized X-Correlation

Thresholded Image

- Goal: find 💽 in image
- Method 3: Normalized cross-correlation

Input

Normalized X-Correlation

Thresholded Image

Q: What is the best method to use?

A: Depends

- SSD: faster, sensitive to overall intensity
- Normalized cross-correlation: slower, invariant to local average intensity and contrast
- But really, neither of these baselines are representative of modern recognition.

Q: What if we want to find larger or smaller eyes?

A: Image Pyramid

Review of Sampling

Gaussian pyramid

512 256 128 64 32 16 8

Source: Forsyth

Template Matching with Image Pyramids

Input: Image, Template

- 1. Match template at current scale
- 2. Downsample image
- 3. Repeat 1-2 until image is very small
- 4. Take responses above some threshold, perhaps with non-maxima suppression

Coarse-to-fine Image Registration

- 1. Compute Gaussian pyramid
- 2. Align with coarse pyramid
- Successively align with finer pyramids
 - Search smaller range

Why is this faster?

Are we guaranteed to get the same result?

2D edge detection filters

 ∇^2 is the **Laplacian** operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Laplacian filter

Source: Lazebnik

Computing Gaussian/Laplacian Pyramid

http://sepwww.stanford.edu/~morgan/texturematch/paper_html/node3.html

Laplacian pyramid

Source: Forsyth

Hybrid Image

Hybrid Image in Laplacian Pyramid

High frequency \rightarrow Low frequency

Image representation

- Pixels: great for spatial resolution, poor access to frequency
- Fourier transform: great for frequency, not for spatial info
- Pyramids/filter banks: balance between spatial and frequency information

Major uses of image pyramids

- Compression
- Object detection
 - Scale search
 - Features
- Detecting stable interest points

Registration

 Course-to-fine

Application: Representing Texture

Source: Forsyth

Texture and Material

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

Texture and Orientation

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

Texture and Scale

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

What is texture?

Regular or stochastic patterns caused by bumps, grooves, and/or markings

How can we represent texture?

Compute responses of blobs and edges at various orientations and scales

Overcomplete representation: filter banks

Code for filter banks: www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

Filter banks

 Process image with each filter and keep responses (or squared/abs responses)

How can we represent texture?

Measure responses of blobs and edges at various orientations and scales

• Idea 1: Record simple statistics (e.g., mean, std.) of absolute filter responses

Can you match the texture to the response?

Mean abs responses

Representing texture by mean abs response

Mean abs responses

Representing texture

 Idea 2: take vectors of filter responses at each pixel and cluster them, then take histograms (more on in later weeks)

Review of last three days

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$g[\cdot, \cdot] \frac{1}{9}$$

1

h[.,.]

$$h[m,n] = \sum_{k,l} f[k,l] g[m+k,n+l]$$

Credit: S. Seitz

Image filtering

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

h[.,.]

$$h[m,n] = \sum_{k,l} f[k,l] g[m+k,n+l]$$

Credit: S. Seitz

Image filtering

1	1	1	1
	1	1	1
9	1	1	1

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

h[.,.]

$$h[m,n] = \sum_{k,l} f[k,l] g[m+k,n+l]$$

Credit: S. Seitz

Filtering in spatial domain

Filtering in frequency domain FFT intensity image log fft magnitude FFT \mathbf{X} **Inverse FFT**

- Filtering in frequency domain
 - Can be faster than filtering in spatial domain (for large filters)
 - Can help understand effect of filter
 - Algorithm:
 - 1. Convert image and filter to fft (fft2 in matlab)
 - 2. Pointwise-multiply ffts
 - 3. Convert result to spatial domain with ifft2

- Linear filters for basic processing
 - Edge filter (high-pass)
 - -Gaussian filter (low-pass)

Gaussian

FFT of Gradient Filter

FFT of Gaussian

• Derivative of Gaussian

- Applications of filters
 - Template matching (SSD or Normxcorr2)
 - SSD can be done with linear filters, is sensitive to overall intensity
 - Gaussian pyramid
 - Coarse-to-fine search, multi-scale detection
 - Laplacian pyramid
 - Teases apart different frequency bands while keeping spatial information
 - Can be used for compositing in graphics
 - Downsampling
 - Need to sufficiently low-pass before downsampling

Next Lectures

 Image representation (e.g. SIFT) and matching across multiple views (e.g. Stereo, Structure from Motion).