Interest Points and Corners

Read Szeliski 4.1

Computer Vision
CS 143, Brown

James Hays

Correspondence across views

- Correspondence: matching points, patches, edges, or regions across images

Example: estimating "fundamental matrix" that corresponds two views

Example: structure from motion

This class: interest points

- Note: "interest points" = "keypoints", also sometimes called "features"
- Many applications
- tracking: which points are good to track?
- recognition: find patches likely to tell us something about object category
- 3D reconstruction: find correspondences across different views

This class: interest points

- Suppose you have to click on some point, go away and come back after I deform the image, and click on the same points again.
- Which points would you choose?

Overview of Keypoint Matching

1. Find a set of distinctive keypoints
2. Define a region around each keypoint
3. Extract and normalize the region content

$$
d\left(f_{A}, f_{B}\right)<T
$$

4. Compute a local descriptor from the normalized region
5. Match local descriptors

Goals for Keypoints

Detect points that are repeatable and distinctive

Key trade-offs

Detection of interest points

More Repeatable
Robust detection
Precise localization

More Points

Robust to occlusion
Works with less texture

Description of patches

More Distinctive
Minimize wrong matches

More Flexible
Robust to expected variations Maximize correct matches

Invariant Local Features

Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

Features Descriptors

Choosing interest points

Where would you tell your friend to meet you?

Choosing interest points

Where would you tell your friend to meet you?

Feature extraction: Corners

9300 Harris Corners Pkwy, Charlotte, NC

Many Existing Detectors Available

Hessian \& Harris
Laplacian, DoG
Harris-/Hessian-Laplace
Harris-/Hessian-Affine
EBR and IBR
MSER
Salient Regions
Others...
[Beaudet '78], [Harris '88]
[Lindeberg '98], [Lowe 1999]
[Mikolajczyk \& Schmid '01]
[Mikolajczyk \& Schmid '04]
[Tuytelaars \& Van Gool '04]
[Matas ‘02]
[Kadir \& Brady ‘01]

- What points would you choose?

Corner Detection: Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Corner Detection: Mathematics

Change in appearance of window $w(x, y)$ for the shift $[u, v]$:

$$
E(u, v)=\sum_{x, y} w(x, y)[I(x+u, y+v)-I(x, y)]^{2}
$$

$$
E(u, v)
$$

Corner Detection: Mathematics

Change in appearance of window $w(x, y)$ for the shift $[u, v]$:

$$
E(u, v)=\sum_{x, y} w(x, y)[I(x+u, y+v)-I(x, y)]^{2}
$$

$$
E(u, v)
$$

Corner Detection: Mathematics

Change in appearance of window $w(x, y)$

 for the shift $[u, v]$:

Window function $w(x, y)=$

1 in window, 0 outside

Gaussian

Corner Detection: Mathematics

Change in appearance of window $w(x, y)$

 for the shift $[u, v]$:$$
E(u, v)=\sum_{x, y} w(x, y)[I(x+u, y+v)-I(x, y)]^{2}
$$

We want to find out how this function behaves for small shifts

$$
E(u, v)
$$

Corner Detection: Mathematics

Change in appearance of window $w(x, y)$

 for the shift $[u, v]$:$$
E(u, v)=\sum_{x, y} w(x, y)[I(x+u, y+v)-I(x, y)]^{2}
$$

We want to find out how this function behaves for small shifts

Local quadratic approximation of $E(u, v)$ in the neighborhood of $(0,0)$ is given by the second-order Taylor expansion:

$$
E(u, v) \approx E(0,0)+\left[\begin{array}{ll}
u & v]
\end{array}\right]\left[\begin{array}{l}
E_{u}(0,0) \\
E_{v}(0,0)
\end{array}\right]+\frac{1}{2}[u v]\left[\begin{array}{ll}
E_{u u}(0,0) & E_{u v}(0,0) \\
E_{u v}(0,0) & E_{v v}(0,0)
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

Corner Detection: Mathematics

The quadratic approximation simplifies to

$$
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

where M is a second moment matrix computed from image derivatives:

$$
\begin{gathered}
M=\sum_{x, y} w(x, y)\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right] \\
M=\left[\begin{array}{cc}
\sum I_{x} I_{x} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y} I_{y}
\end{array}\right]=\sum\left[\begin{array}{c}
I_{x} \\
I_{y}
\end{array}\right]\left[I_{x} I_{y}\right]=\sum \nabla I(\nabla I)^{T}
\end{gathered}
$$

Corners as distinctive interest points

$$
M=\sum w(x, y)\left[\begin{array}{ll}
I_{x} I_{x} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y} I_{y}
\end{array}\right]
$$

2×2 matrix of image derivatives (averaged in neighborhood of a point).

Notation:

$$
I_{x} \Leftrightarrow \frac{\partial I}{\partial x}
$$

$$
I_{y} \Leftrightarrow \frac{\partial I}{\partial y} \quad I_{x} I_{y} \Leftrightarrow \frac{\partial I}{\partial x} \frac{\partial I}{\partial y}
$$

Interpreting the second moment matrix

The surface $E(u, v)$ is locally approximated by a quadratic form. Let's try to understand its shape.

$$
\begin{gathered}
E(u, v) \approx\left[\begin{array}{lll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
M=\sum_{x, y} w(x, y)\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]
\end{gathered}
$$

Interpreting the second moment matrix

Consider a horizontal "slice" of $E(u, v):\left[\begin{array}{ll}u & v\end{array}\right] M\left[\begin{array}{l}u \\ v\end{array}\right]=$ const
This is the equation of an ellipse.

Interpreting the second moment matrix

Consider a horizontal "slice" of $E(u, v)$: $\quad\left[\begin{array}{ll}u & v\end{array}\right] M\left[\begin{array}{l}u \\ v\end{array}\right]=$ const
This is the equation of an ellipse.
Diagonalization of M :

$$
M=R^{-1}\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] R
$$

The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by R

Visualization of second moment matrices

Visualization of second moment matrices

Interpreting the eigenvalues

Classification of image points using eigenvalues of M :

Corner response function

$R=\operatorname{det}(M)-\alpha \operatorname{trace}(M)^{2}=\lambda_{1} \lambda_{2}-\alpha\left(\lambda_{1}+\lambda_{2}\right)^{2}$
α : constant (0.04 to 0.06)

Harris corner detector

1) Compute M matrix for each image window to get their cornerness scores.
2) Find points whose surrounding window gave large corner response (t> threshold)
3) Take the points of local maxima, i.e., perform non-maximum suppression
C.Harris and M.Stephens. "A Combined Corner and Edge Detector." Proceedings of the 4th Alvey Vision Conference: pages 147-151, 1988.

Harris Detector ${ }_{\text {[Harris88] }}$

- Second moment matrix

$$
\mu\left(\sigma_{I}, \sigma_{D}\right)=g\left(\sigma_{I}\right) *\left[\begin{array}{cc}
I_{x}^{2}\left(\sigma_{D}\right) & I_{x} I_{y}\left(\sigma_{D}\right) \\
I_{x} I_{y}\left(\sigma_{D}\right) & I_{y}^{2}\left(\sigma_{D}\right)
\end{array}\right] \begin{gathered}
\text { 1. Image } \\
\text { derivatives } \\
\text { (optionally, blur first) }
\end{gathered}
$$

$\operatorname{det} M=\lambda_{1} \lambda_{2}$
trace $M=\lambda_{1}+\lambda_{2}$
2. Square of derivatives
3. Gaussian filter $g\left(\sigma_{I}\right)$

4. Cornerness function - both eigenvalues are strong $\operatorname{har}=\operatorname{det}\left[\mu\left(\sigma_{I}, \sigma_{D}\right)\right]-\alpha\left[\operatorname{trace}\left(\mu\left(\sigma_{I}, \sigma_{D}\right)\right)^{2}\right]=$ $g\left(I_{x}^{2}\right) g\left(I_{y}^{2}\right)-\left[g\left(I_{x} I_{y}\right)\right]^{2}-\alpha\left[g\left(I_{x}^{2}\right)+g\left(I_{y}^{2}\right)\right]^{2}$
5. Non-maxima suppression

Harris Detector: Steps

Harris Detector: Steps

Compute corner response R

Harris Detector: Steps

Find points with large corner response: $R>$ threshold

Harris Detector: Steps

Take only the points of local maxima of R

Harris Detector: Steps

Invariance and covariance

- We want corner locations to be invariant to photometric transformations and covariant to geometric transformations
- Invariance: image is transformed and corner locations do not change
- Covariance: if we have two transformed versions of the same image, features should be detected in corresponding locations

Affine intensity change

$$
\square \leadsto \quad I \rightarrow a I+b
$$

- Only derivatives are used => invariance to intensity shift $I \rightarrow I+b$
- Intensity scaling: $I \rightarrow a I$

Partially invariant to affine intensity change

Image translation

- Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation

Image rotation

Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation

Scaling

All points will
be classified
as edges
Corner location is not covariant to scaling!

Next Lecture

How do we represent the patches around the interest points?
How do we make sure that representation is invariant?

