Local Image Features Read Szeliski 4.1

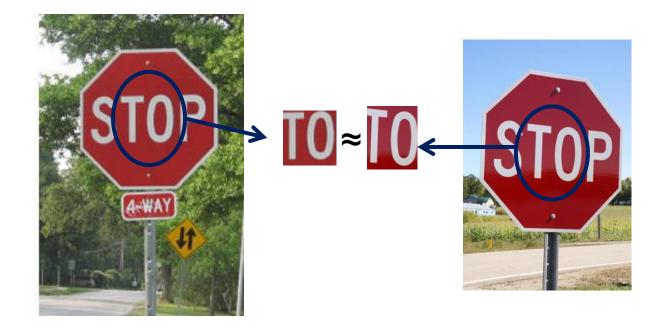
Computer Vision CS 143, Brown

James Hays

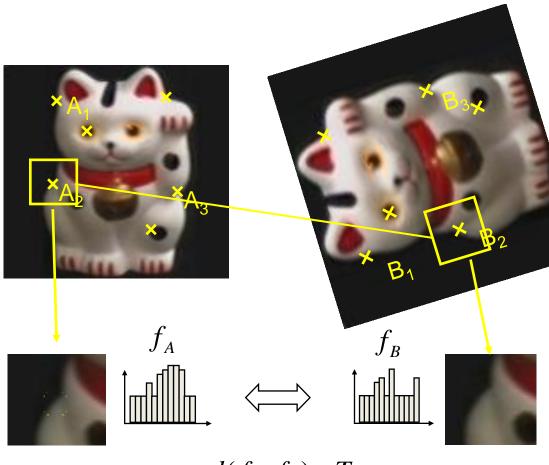
Acknowledgment: Many slides from Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial

This section: correspondence and alignment

 Correspondence: matching points, patches, edges, or regions across images



Overview of Keypoint Matching

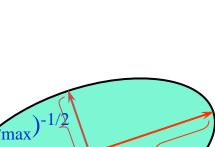


 $d(f_A, f_B) \!<\! T$

- 1. Find a set of distinctive keypoints
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

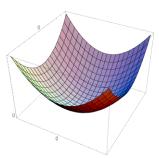
Review: Harris corner detector

- Approximate distinctiveness by local auto-correlation.
- Approximate local auto-correlation by second moment matrix
- Quantify distinctiveness (or cornerness) as function of the eigenvalues of the second moment matrix.
- But we don't actually need to compute the eigenvalues by using the determinant and trace of the second moment matrix.



 (λ_{\min})

E(u, v)



Harris Detector [Harris88]

• Second moment matrix

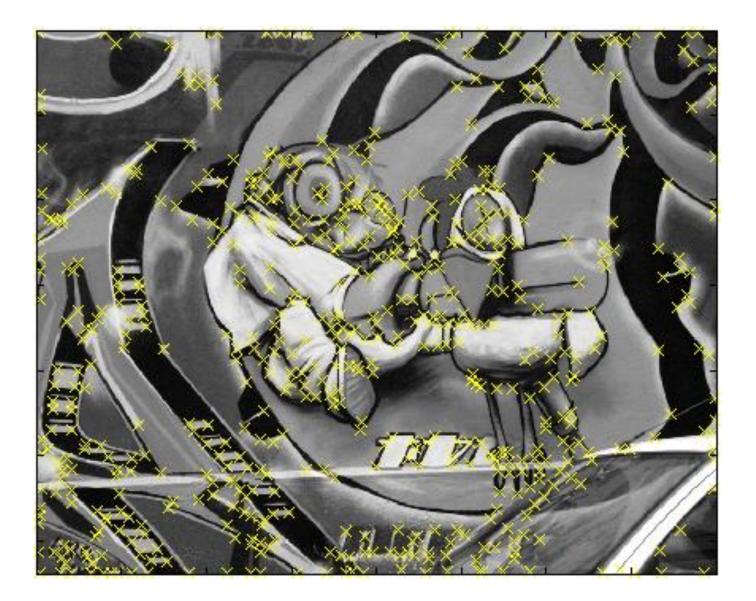
$$\mu(\sigma_{I},\sigma_{D}) = g(\sigma_{I}) * \begin{bmatrix} I_{x}^{2}(\sigma_{D}) & I_{x}I_{y}(\sigma_{D}) \\ I_{x}I_{y}(\sigma_{D}) & I_{y}^{2}(\sigma_{D}) \end{bmatrix} \stackrel{1. \text{ Image}}{\substack{\text{derivatives} \\ \text{optionally, blur first}}} \stackrel{I}{\longrightarrow} \stackrel$$

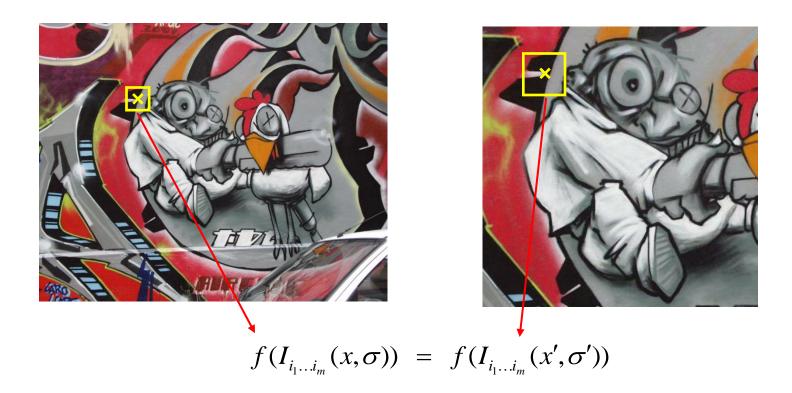
har

$$har = \det[\mu(\sigma_{I}, \sigma_{D})] - \alpha[\operatorname{trace}(\mu(\sigma_{I}, \sigma_{D}))^{2}] = g(I_{x}^{2})g(I_{y}^{2}) - [g(I_{x}I_{y})]^{2} - \alpha[g(I_{x}^{2}) + g(I_{y}^{2})]^{2}$$

5. Non-maxima suppression

So far: can localize in x-y, but not scale





How to find corresponding patch sizes?

• Function responses for increasing scale (scale signature)

 $f(I_{i_1...i_m}(x,\sigma))$

22ale

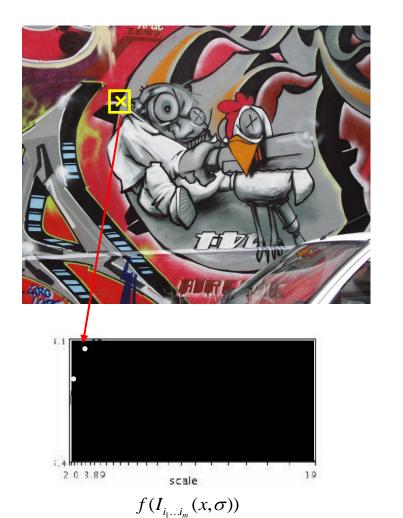
 $f(I_{i_1...i_m}(x',\sigma))$

19.

K. Grauman, B. Leibe

2.0

• Function responses for increasing scale (scale signature)



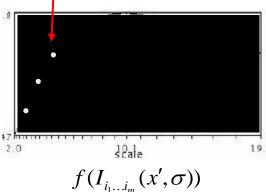
47 2.0 \$Cale 19.

 $f(I_{i_1...i_m}(x',\sigma))$

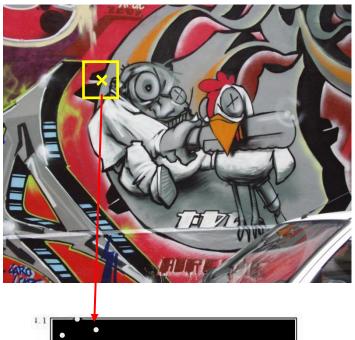
K. Grauman, B. Leibe

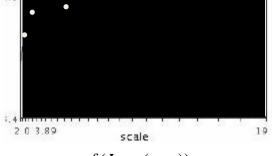
• Function responses for increasing scale (scale signature)

 $f(I_{i_1...i_m}(x,\sigma))$

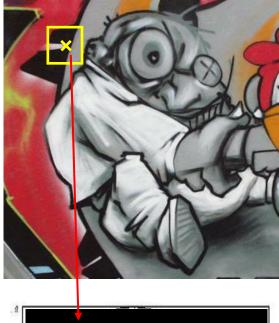


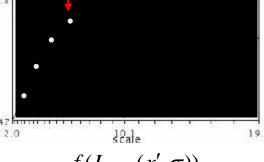
• Function responses for increasing scale (scale signature)





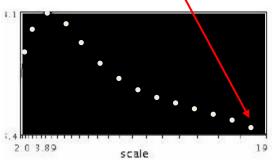
 $f(I_{i_1...i_m}(x,\sigma))$



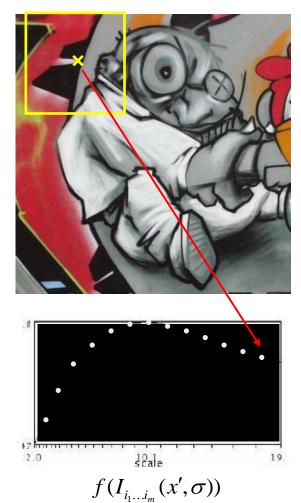


 $f(I_{i_1...i_m}(x',\sigma))$

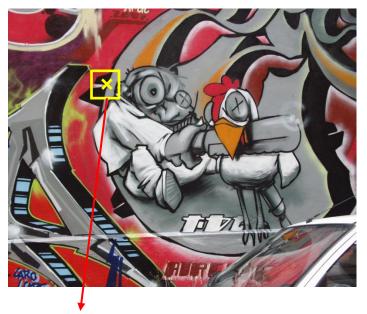
• Function responses for increasing scale (scale signature)

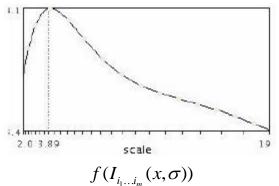


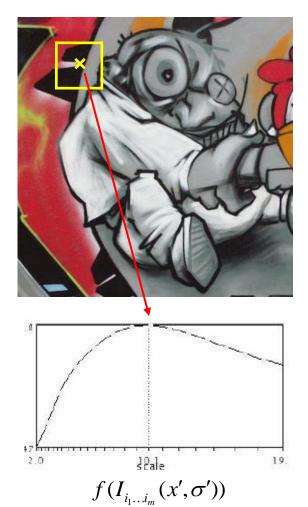
 $f(I_{i_1...i_m}(x,\sigma))$



• Function responses for increasing scale (scale signature)



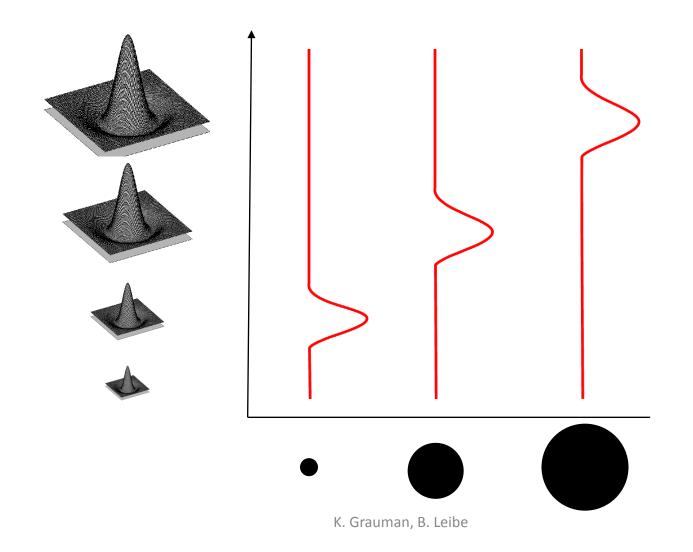




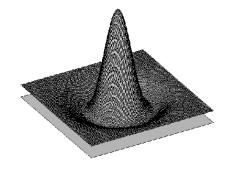
K. Grauman, B. Leibe

What Is A Useful Signature Function?

• Difference-of-Gaussian = "blob" detector



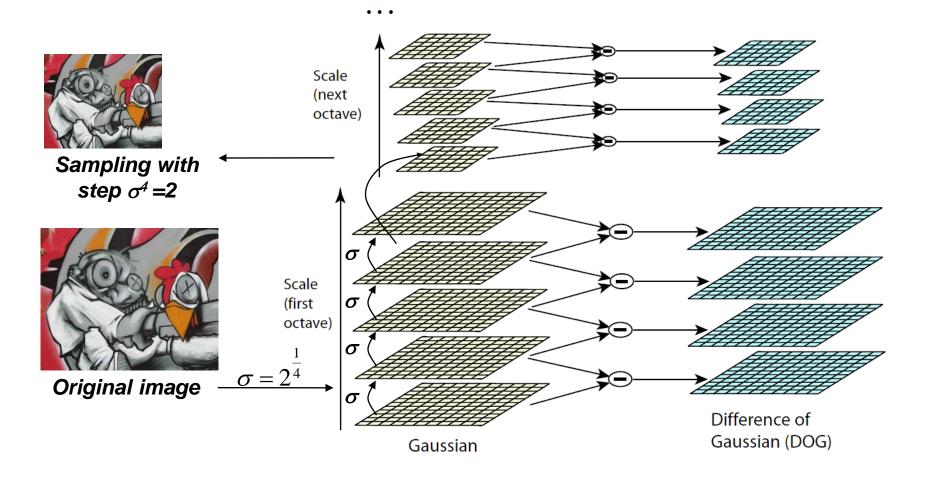
Difference-of-Gaussian (DoG)



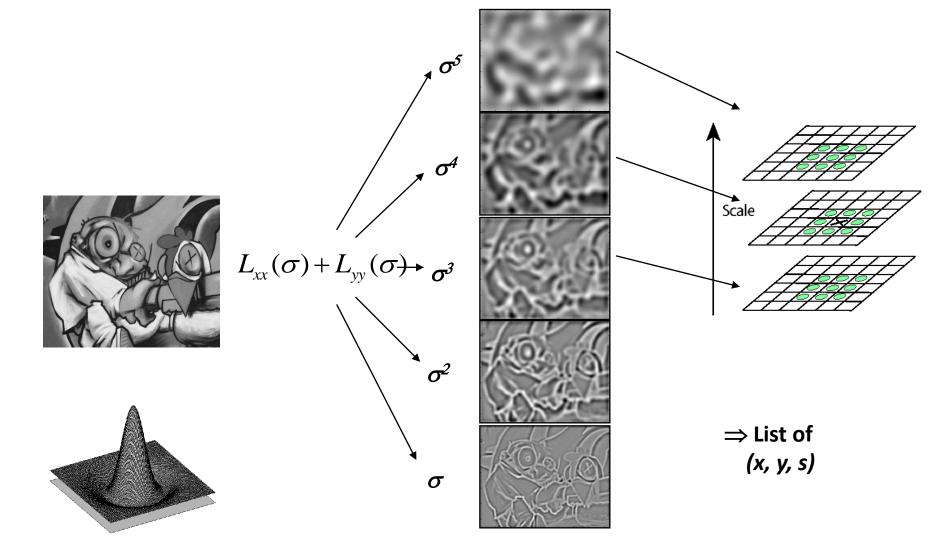
K. Grauman, B. Leibe

DoG – Efficient Computation

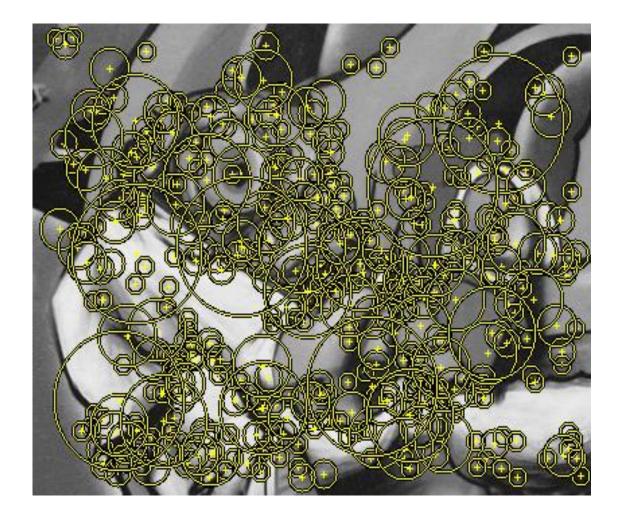
Computation in Gaussian scale pyramid



Find local maxima in position-scale space of Difference-of-Gaussian

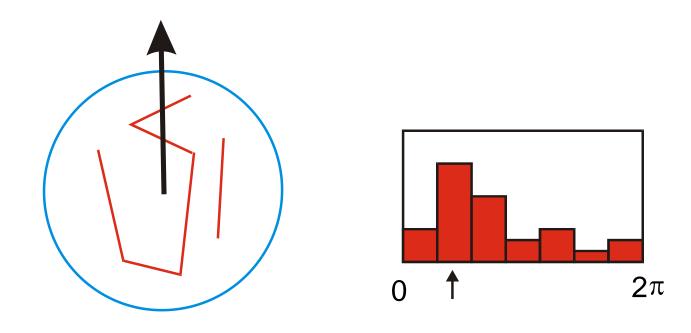


Results: Difference-of-Gaussian



Orientation Normalization

- Compute orientation histogram
- Select dominant orientation
- Normalize: rotate to fixed orientation



[Lowe, SIFT, 1999]

Maximally Stable Extremal Regions [Matas '02]

- Based on Watershed segmentation algorithm
- Select regions that stay stable over a large parameter range

Example Results: MSER

Image representations

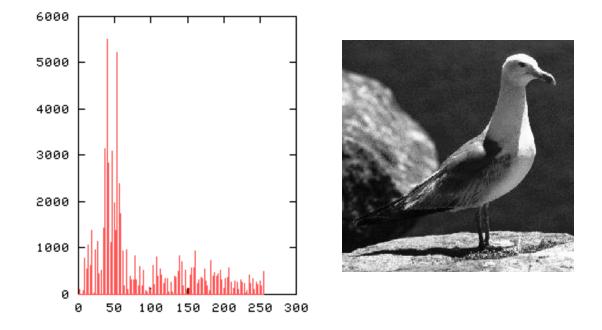
Templates

- Intensity, gradients, etc.

• Histograms

- Color, texture, SIFT descriptors, etc.

Image Representations: Histograms



Global histogram

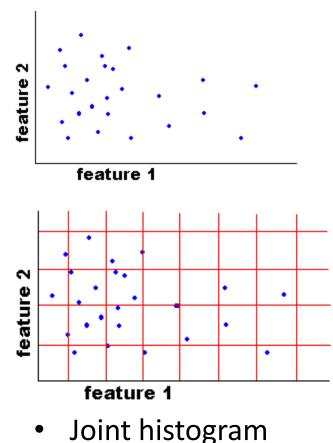
• Represent distribution of features

- Color, texture, depth, ...

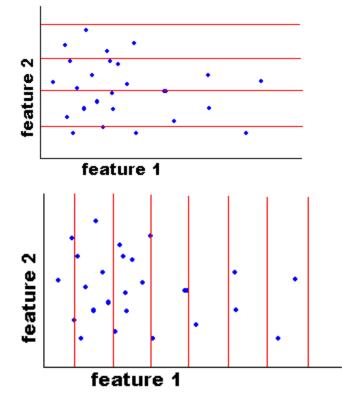
Images from Dave Kauchak

Image Representations: Histograms

Histogram: Probability or count of data in each bin



- Requires lots of data
 - Loss of resolution to avoid empty bins

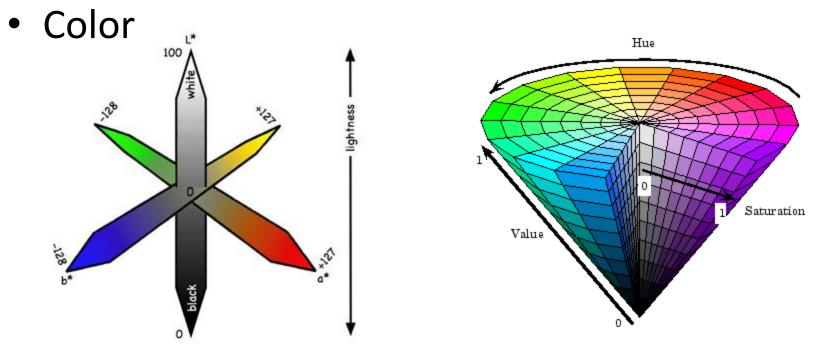


Marginal histogram

- Requires independent features
- More data/bin than joint histogram

Images from Dave Kauchak

What kind of things do we compute histograms of?



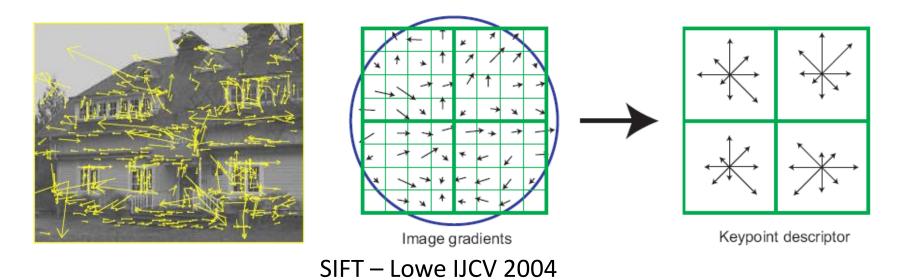
L*a*b* color space

HSV color space

• Texture (filter banks or HOG over regions)

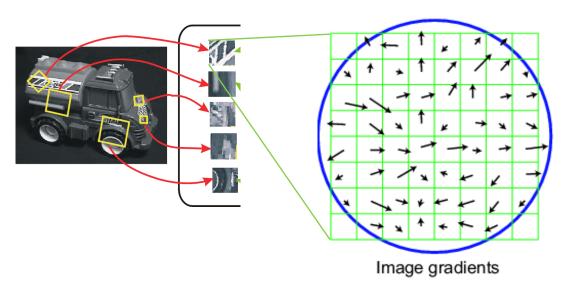
What kind of things do we compute histograms of?

• Histograms of oriented gradients



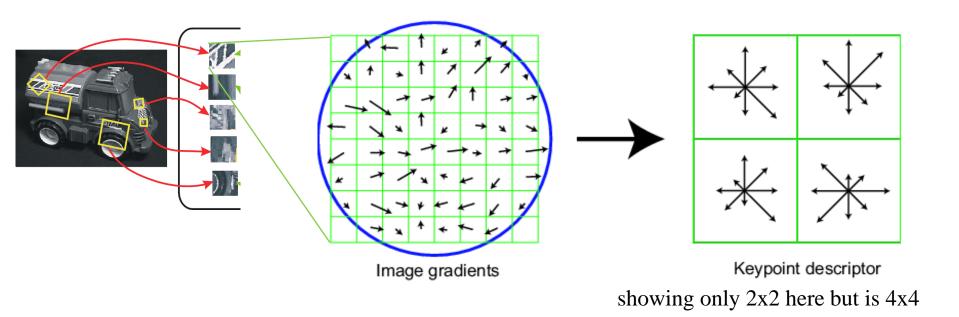
SIFT vector formation

- Computed on rotated and scaled version of window according to computed orientation & scale
 resample the window
- Based on gradients weighted by a Gaussian of variance half the window (for smooth falloff)



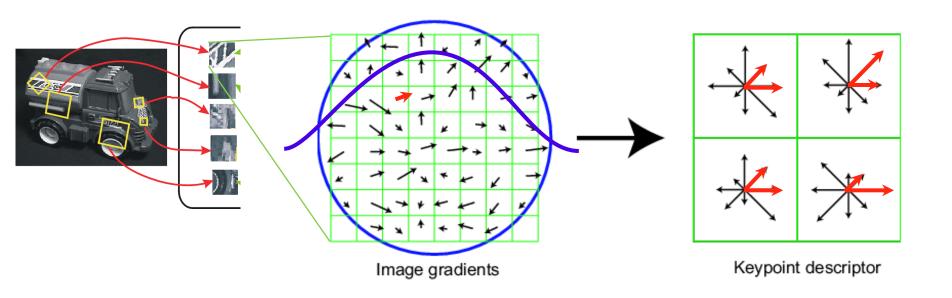
SIFT vector formation

- 4x4 array of gradient orientation histogram weighted by magnitude
- 8 orientations x 4x4 array = 128 dimensions
- Motivation: some sensitivity to spatial layout, but not too much.



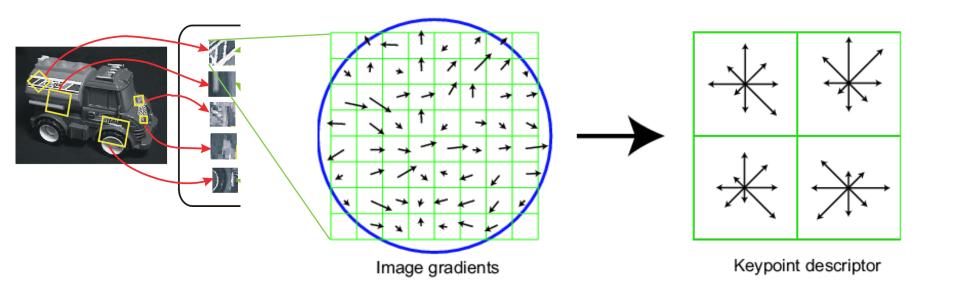
Ensure smoothness

- Gaussian weight
- Trilinear interpolation
 - a given gradient contributes to 8 bins:
 4 in space times 2 in orientation
 - 4 in space times 2 in orientation

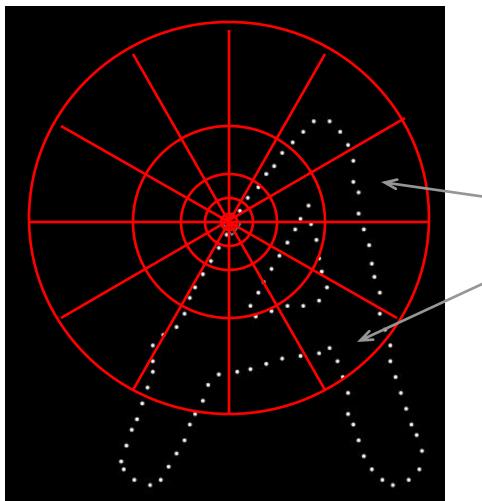


Reduce effect of illumination

- 128-dim vector normalized to 1
- Threshold gradient magnitudes to avoid excessive influence of high gradients
 - after normalization, clamp gradients >0.2
 - renormalize



Local Descriptors: Shape Context



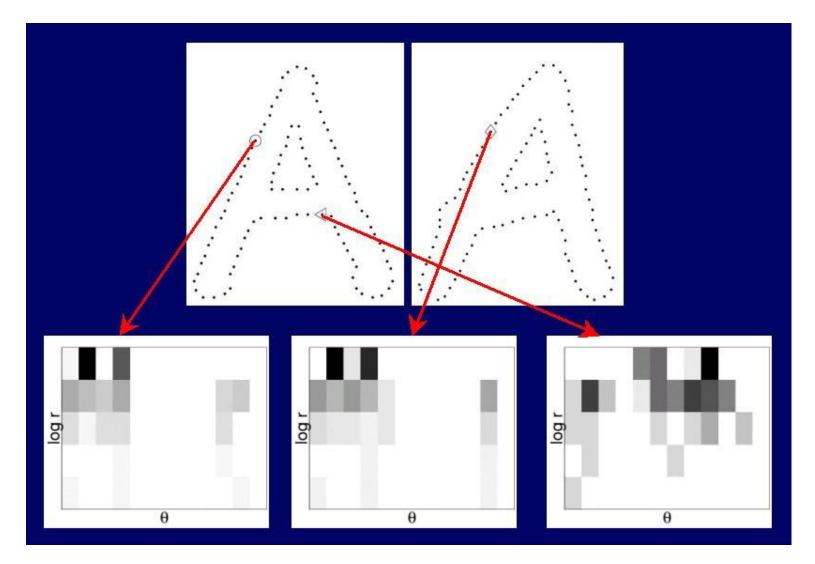
Count the number of points inside each bin, e.g.:

Count = 4 : Count = 10

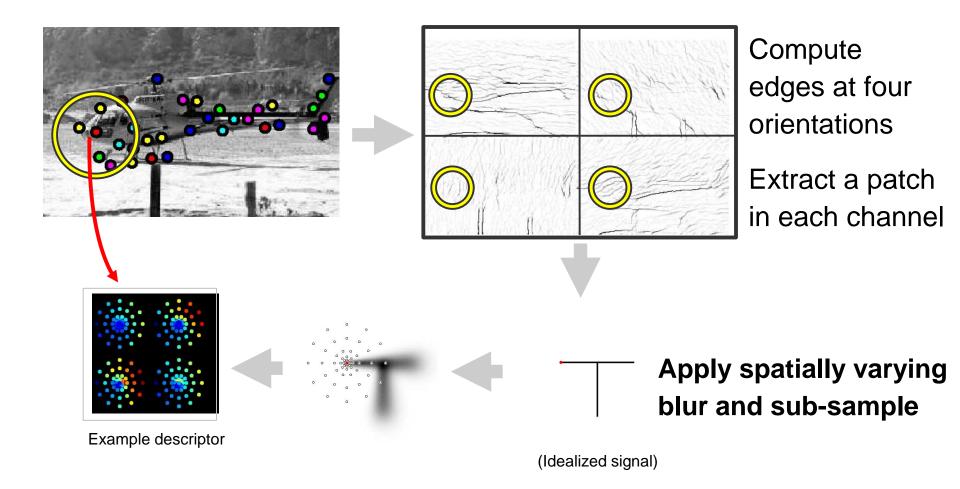
Log-polar binning: more precision for nearby points, more flexibility for farther points.

Belongie & Malik, ICCV 2001

Shape Context Descriptor



Local Descriptors: Geometric Blur



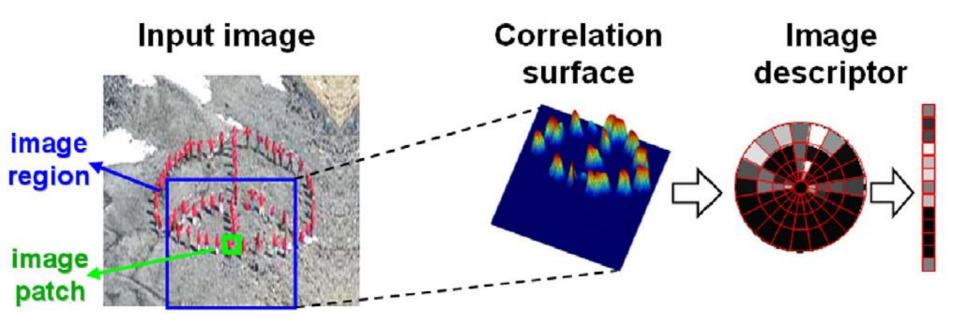
Berg & Malik, CVPR 2001

Self-similarity Descriptor

Figure 1. These images of the same object (a heart) do NOT share common image properties (colors, textures, edges), but DO share a similar geometric layout of local internal self-similarities.

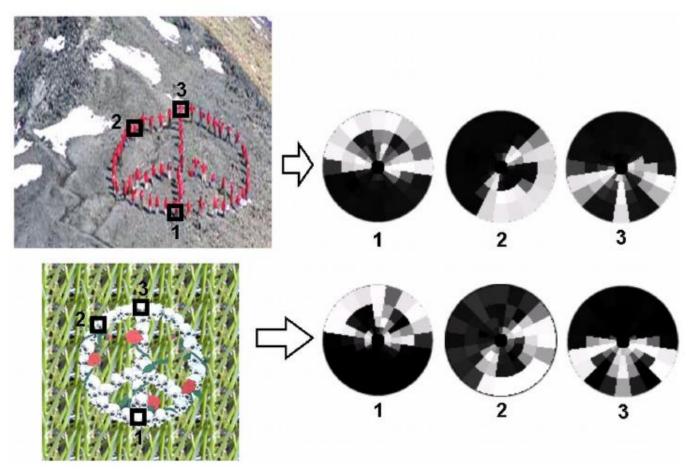
Matching Local Self-Similarities across Images and Videos, Shechtman and Irani, 2007

Self-similarity Descriptor



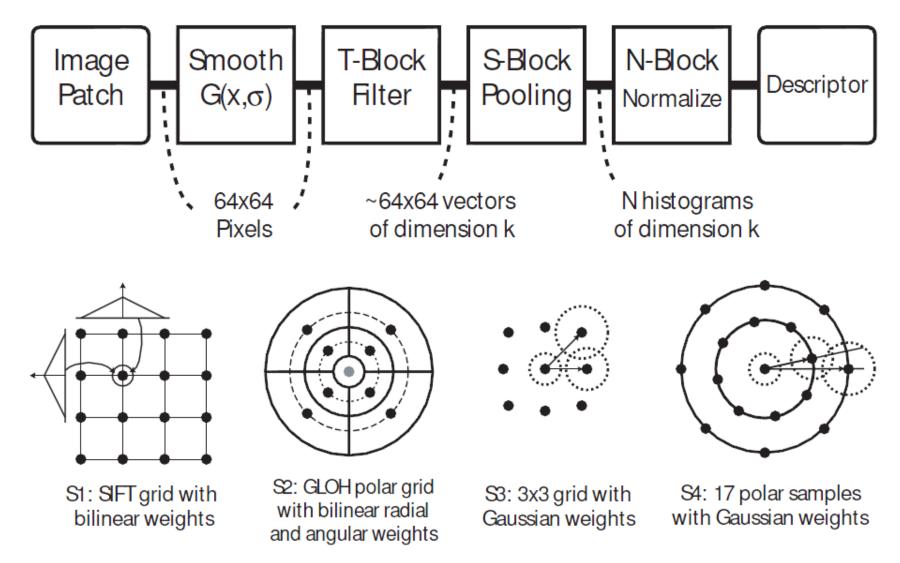
Matching Local Self-Similarities across Images and Videos, Shechtman and Irani, 2007

Self-similarity Descriptor



Matching Local Self-Similarities across Images and Videos, Shechtman and Irani, 2007

Learning Local Image Descriptors, Winder and Brown, 2007

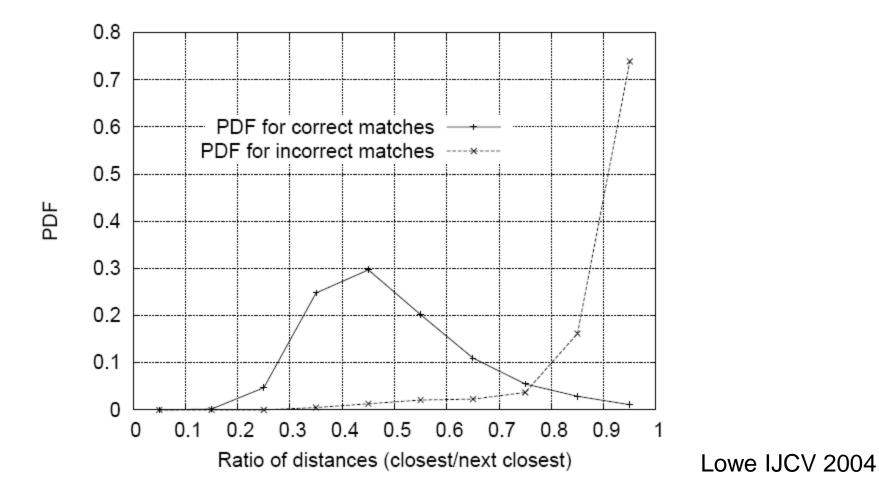


Local Descriptors

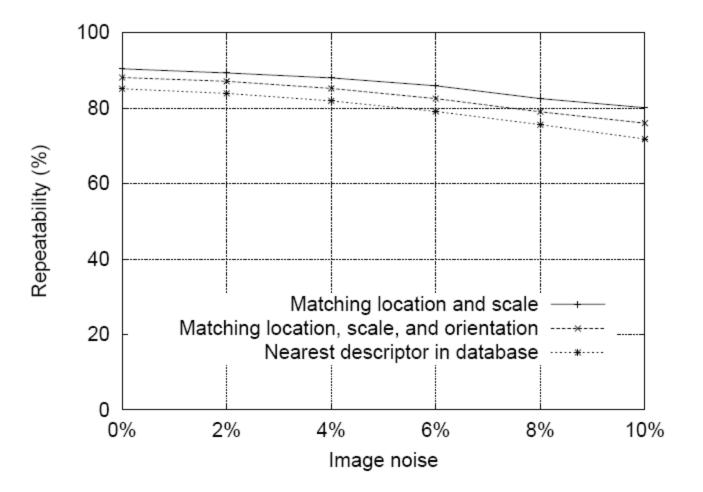
- Most features can be thought of as templates, histograms (counts), or combinations
- The ideal descriptor should be
 - Robust
 - Distinctive
 - Compact
 - Efficient
- Most available descriptors focus on edge/gradient information
 - Capture texture information
 - Color rarely used

Matching Local Features

- Nearest neighbor (Euclidean distance)
- Threshold ratio of nearest to 2nd nearest descriptor

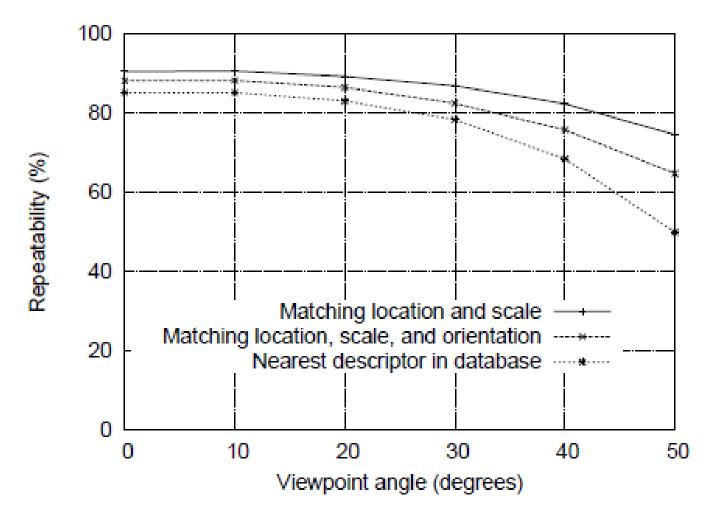


SIFT Repeatability

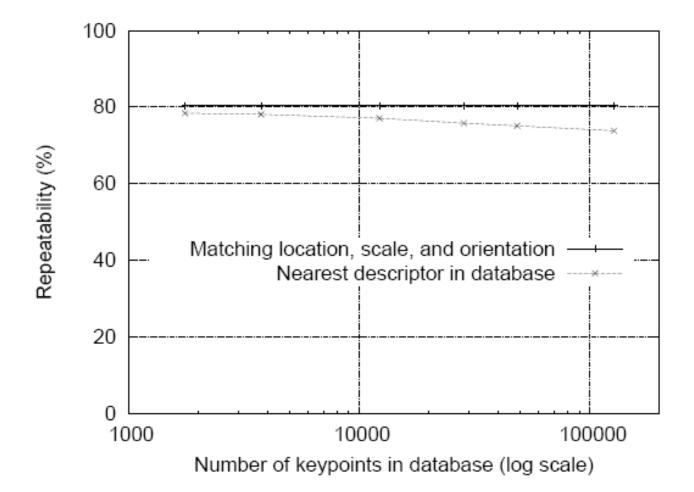


Lowe IJCV 2004

SIFT Repeatability

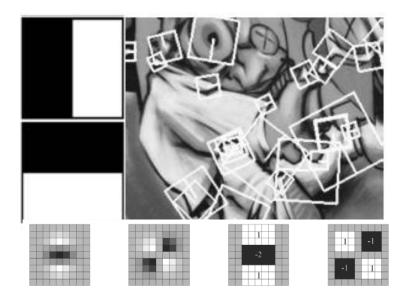


SIFT Repeatability



Lowe IJCV 2004

Local Descriptors: SURF



Fast approximation of SIFT idea

Efficient computation by 2D box filters & integral images ⇒ 6 times faster than SIFT Equivalent quality for object identification

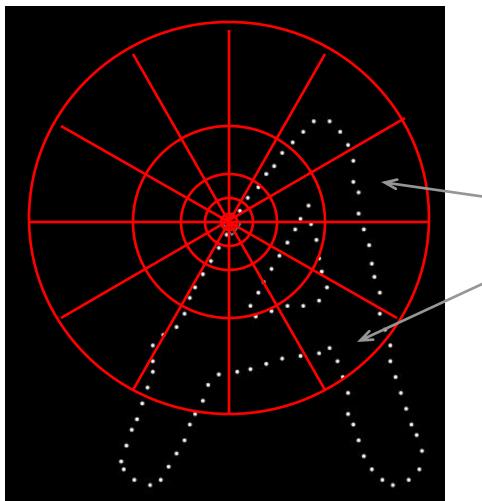
GPU implementation available

Feature extraction @ 200Hz (detector + descriptor, 640×480 img)

http://www.vision.ee.ethz.ch/~surf

[Bay, ECCV'06], [Cornelis, CVGPU'08]

Local Descriptors: Shape Context



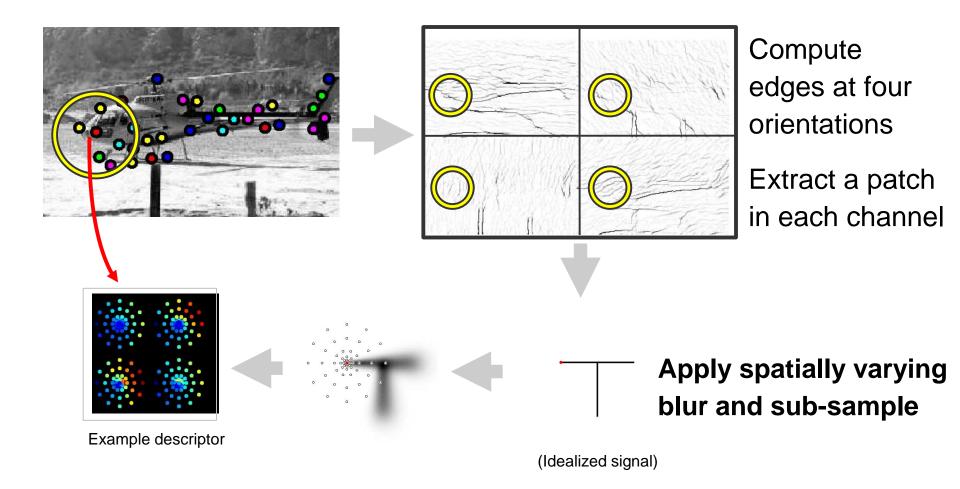
Count the number of points inside each bin, e.g.:

Count = 4 : Count = 10

Log-polar binning: more precision for nearby points, more flexibility for farther points.

Belongie & Malik, ICCV 2001

Local Descriptors: Geometric Blur



Berg & Malik, CVPR 2001

K. Grauman, B. Leibe

Choosing a detector

- What do you want it for?
 - Precise localization in x-y: Harris
 - Good localization in scale: Difference of Gaussian
 - Flexible region shape: MSER
- Best choice often application dependent
 - Harris-/Hessian-Laplace/DoG work well for many natural categories
 - MSER works well for buildings and printed things
- Why choose?
 - Get more points with more detectors
- There have been extensive evaluations/comparisons
 - [Mikolajczyk et al., IJCV'05, PAMI'05]
 - All detectors/descriptors shown here work well

Comparison of Keypoint Detectors

Table 7.1 Overview of feature detectors.

l										
	1			Rotation	Scale	Affine		Localization		
Feature Detector	Corner	Blob	Region	invariant	invariant	invariant	Repeatability	accuracy	Robustness	Efficiency
Harris	\checkmark		-	\checkmark			+++	+++	+++	++
Hessian	1	\checkmark	ļ	\checkmark		,	++	++	++	+
SUSAN	\checkmark			\checkmark		!	++	++	++	+++
Harris-Laplace	\checkmark	(√)		\checkmark	\checkmark		+++	+++	++	+
Hessian-Laplace	()	\checkmark	1	\checkmark	\checkmark	1	+++	+++	+++	+
DoG	()	\checkmark	ļ	\checkmark	\checkmark	,	++	++	++	++
SURF	()			\checkmark	\checkmark	!	++	++	++	+++
Harris-Affine	\checkmark	(√)		\checkmark	\checkmark	\checkmark	+++	+++	++	++
Hessian-Affine	()	\sim	ļ	\checkmark	\checkmark	\sim /	+++	+++	+++	++
Salient Regions	()	\checkmark	ļ	\checkmark	\checkmark	()	+	+	++	+
Edge-based	\checkmark		1	\checkmark	\checkmark		+++	+++	+	+
MSER			\checkmark	\checkmark	\checkmark	\checkmark	+++	+++	++	+++
Intensity-based	1		\checkmark	\checkmark	\checkmark	\sim '	++	++	++	++
Superpixels	1		\checkmark	\checkmark	()	()	+	+	+	+

Tuytelaars Mikolajczyk 2008

Choosing a descriptor

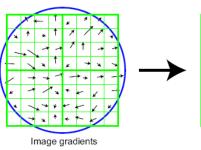
• Again, need not stick to one

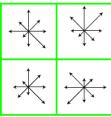
For object instance recognition or stitching,
 SIFT or variant is a good choice

Things to remember

- Keypoint detection: repeatable and distinctive
 - Corners, blobs, stable regions
 - Harris, DoG

- Descriptors: robust and selective
 - spatial histograms of orientation
 - SIFT





Keypoint descriptor

Next time

• Feature tracking