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Project 2 questions?

The top 100 most confident local feature matches from a baseline implementation of project 2. In this case, 93 were correct (highlighted in green) and
7 were incorrect (highlighted in red).

Project 2: Local Feature Matching
CS 143: Introduction to Computer Vision

Brief
¢ Due: 11:59pm on Monday, October 7th, 2013
e Stencil code: /course/cs143/asgn/proj2/code/
* Data: /course/cs143/asgn/proj2/data/ includes 93 images from g different outdoor scenes.
¢ Html writeup template: /course/cs143/asgn/proj2/html/
¢ Partial project materials are also available in proj2.zip (1.7 MB). Includes only the two test images shown above.
¢ Handin: cs143_handin proj2
¢ Required files: README, code/, html/, html/index.html



This section: correspondence and
alignment

* Correspondence: matching points, patches,
edges, or regions across images




Overview of Keypoint Matching

1. Find a set of
distinctive key-
points

2. Define aregion
around each
keypoint

3. Extract and
normalize the
region content

4. Compute a local
descriptor from the
normalized region

d(f,, fg)<T

5. Match local
descriptors

K. Grauman, B. Leibe



Review: Interest points

* Keypoint detection: repeatable
and distinctive

— Corners, blobs, stable regions
— Harris, DoG, MSER




Review: Choosing an interest point
detector

 What do you want it for?
— Precise localization in x-y: Harris
— Good localization in scale: Difference of Gaussian
— Flexible region shape: MSER

e Best choice often application dependent
— Harris-/Hessian-Laplace/DoG work well for many natural categories
— MSER works well for buildings and printed things

* Why choose?
— Get more points with more detectors

* There have been extensive evaluations/comparisons
— [Mikolajczyk et al., 1JCV’05, PAMI’05]
— All detectors/descriptors shown here work well



Review: Local Descriptors

* Most features can be thought of as templates,
histograms (counts), or combinations

* The ideal descriptor should be 77775 i
— Robust and Distinctive ( S RNGh ) —>
NS H N\
— Compact and Efficient oo

* Most available descriptors focus on
edge/gradient information

— Capture texture information
— Color rarely used

K. Grauman, B. Leibe




How do we decide which features match?




Feature Matching

e Szeliski 4.1.3

— Simple feature-space methods

— Evaluation methods

— Acceleration methods

— Geometric verification (Chapter 6)



Feature Matching

* Simple criteria: One feature matches to
another if those features are nearest

neighbors and their distance is below some
threshold.

* Problems:
— Threshold is difficult to set

— Non-distinctive features could have lots of close
matches, only one of which is correct



Matching Local Features

 Threshold based on the ratio of 15t nearest neighbor

to 2" nearest neighbor distance.
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SIFT Repeatability
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SIFT Repeatability
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How do we decide which features match?




Fitting: find the parameters of a model that
best fit the data

Alignment: find the parameters of the
transformation that best align matched points



Fitting and Alighnment

* Design challenges

— Design a suitable goodness of fit measure
 Similarity should reflect application goals
* Encode robustness to outliers and noise

— Design an optimization method

* Avoid local optima
* Find best parameters quickly



Fitting and Alignment: Methods

* Global optimization / Search for parameters
— Least squares fit
— Robust least squares
— |terative closest point (ICP)

* Hypothesize and test

— Generalized Hough transform
— RANSAC



Simple example: Fitting a line



Least squares line fitting

-D.ata: (X4, y.l), EXn, Yn) ¢ y=mx+b
*Line equation:y; =mx; + b I
*Find (M, b) to minimize :
: b (6 Y
E :Zizl()’i —MX; _b)2 >
i} » [, 1] " v
- :z:y[[xi 1]M—yij )R ] e
X, 1 | Yn |
=y'y —2(Ap)"y +(Ap)" (Ap)
dE . T _ Ty —
d—p_zA Ap-2Ay =0 Matlab:p = A \ y;

ATAp=ATy=p=(ATA) ATy

Modified from S. Lazebnik



Least squares (global) optimization

Good
e Clearly specified objective
* Optimization is easy

Bad
* May not be what you want to optimize

e Sensitive to outliers
— Bad matches, extra points

 Doesn’t allow you to get multiple good fits
— Detecting multiple objects, lines, etc.



Robust least squares (to deal with outliers)

General approach:
minimize Zp(ui(xi,ﬂ);a) U2 :Zin:l(Yi_mXi_b)z
i

u; (xi, ) — residual of it" point w.r.t. model parameters ¢
p — robust function with scale parameter o

2 2

. . U~
1.8} plu; JJ —

o2 + u? | The robust function p
|« Favors a configuration
with small residuals

» Constant penalty for large
residuals

Slide from S. Savarese



Robust Estimator

1. Initialize: e.g., choose 0 by least squares fit and
o =1.5- median (error)

error(@,data, )’

2. Choose params to minimize: Z
— E.g., numerical optimization

o’ +error(0,data, )*

3. Compute new o =1.5-median(error)

4. Repeat (2) and (3) until convergence



Other ways to search for parameters (for
when no closed form solution exists)

* Line search

1. For each parameter, step through values and choose value
that gives best fit

2. Repeat (1) until no parameter changes

e @Grid search

1. Propose several sets of parameters, evenly sampled in the
joint set

2. Choose best (or top few) and sample joint parameters around
the current best; repeat

* Gradient descent
1. Provide initial position (e.g., random)
2. Locally search for better parameters by following gradient



Hypothesize and test

1. Propose parameters
— Try all possible
— Each point votes for all consistent parameters
— Repeatedly sample enough points to solve for parameters

2. Score the given parameters

— Number of consistent points, possibly weighted by
distance

3. Choose from among the set of parameters
— Global or local maximum of scores

4. Possibly refine parameters using inliers



Hough Transform: Outline

1. Create a grid of parameter values

2. Each point votes for a set of parameters,
incrementing those values in grid

3. Find maximum or local maxima in grid



Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High
Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains
the data points best

Hough space

y=mx+Db

Slide from S. Savarese



Hough transform

) m

Slide from S. Savarese



Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High
Energy Accelerators and Instrumentation, 1959

Issue : parameter space [m,b] is unbounded...

Use a polar representation for the parameter space

Hough space

XCcos@ +ysing =p

Slide from S. Savarese



Hough transform - experiments

features votes

Slide from S. Savarese



Hough transform - experiments

Noisy data

features votes

Need to adjust grid size or smooth

Slide from S. Savarese



Hough transform - experiments

features votes

Issue: spurious peaks due to uniform noise

Slide from S. Savarese



Image = Canny

\e=g\:
\ )\

)
A

e

i

«
AR



NEz==

s s s
i o fumﬂ____

(Vp)
Q
=
O
>
-
o]0)
>
®
L
>
-
-
(qu)
O
(@




Hough votes - Edges

3

Find peaks and post-process




Hough transform example

=7 “Image ‘ Hough Transfonm

http://ostatic.com/files/images/ss_hough.jpg



Finding lines using Hough transform

e Using m,b parameterization

e Usingr, theta parameterization
— Using oriented gradients

* Practical considerations
— Bin size
— Smoothing
— Finding multiple lines
— Finding line segments



Next lecture

* RANSAC

* Connecting model fitting with feature
matching



