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Depth from disparity 
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Outline 

• Human stereopsis 

• Stereograms 

• Epipolar geometry and the epipolar constraint 

– Case example with parallel optical axes 

– General case with calibrated cameras 

 

 



General case, with calibrated cameras  

• The two cameras need not have parallel optical axes. 

Vs. 



• Given p in left image, where can corresponding 

point p’ be? 

Stereo correspondence constraints 



Stereo correspondence constraints 



Geometry of two views constrains where the 

corresponding pixel for some image point in the first view 

must occur in the second view. 

• It must be on the line carved out by a plane 

 connecting the world point and optical centers.  
 

Epipolar constraint 

 



• Epipolar Plane 

Epipole 

Epipolar Line 

Baseline 

Epipolar geometry 

 

Epipole 

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html 

 

 

 

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html


• Baseline: line joining the camera centers 

• Epipole: point of intersection of baseline with image plane 

• Epipolar plane: plane containing baseline and world point 

• Epipolar line: intersection of epipolar plane with the image 

plane 

 

• All epipolar lines intersect at the epipole 

• An epipolar plane intersects the left and right image planes 

in epipolar lines 

 

Epipolar geometry: terms 

 

Why is the epipolar constraint useful? 



Epipolar constraint 

 

This is useful because it reduces the correspondence 

problem to a 1D search along an epipolar line. 

Image from Andrew Zisserman 



Example 



What do the epipolar lines look like? 
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Example: converging cameras 

Figure from Hartley & Zisserman 



Figure from Hartley & Zisserman 

Example: parallel cameras 

Where are the 

epipoles? 



Example: Forward motion 

 

 

 What would the epipolar lines look like if the 
camera moves directly forward? 



e 

e’ 

Example: Forward motion 

Epipole has same coordinates in both 

images. 

Points move along lines radiating from e: 

“Focus of expansion” 



Fundamental matrix 

Let p be a point in left image, p’ in right image 

 

 

 

Epipolar relation 

• p maps to epipolar line l’  

• p’ maps to epipolar line l  

Epipolar mapping described by a 3x3 matrix F 

 

 

 

It follows that 

l’ l 

p p’ 



Fundamental matrix 

This matrix F is called 

• the “Essential Matrix” 

– when image intrinsic parameters are known 

• the “Fundamental Matrix” 

– more generally (uncalibrated case) 

 

Can solve for F from point correspondences 

• Each (p, p’) pair gives one linear equation in entries of F 

 

 

• F has 9 entries, but really only 7 or 8 degrees of freedom. 

• With 8 points it is simple to solve for F, but it is also possible 

with 7. See Marc Pollefey’s notes for a nice tutorial 

 

http://cs.unc.edu/~marc/tutorial/node53.html


Stereo image rectification 



Stereo image rectification 

• Reproject image planes 
onto a common plane 
parallel to the line 
between camera centers 
 

• Pixel motion is horizontal 
after this transformation 
 
 

• Two homographies (3x3 
transform), one for each 
input image reprojection 
 

 C. Loop and Z. Zhang. Computing 
Rectifying Homographies for Stereo 
Vision. IEEE Conf. Computer Vision 
and Pattern Recognition, 1999. 

http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf


Rectification example 

 



The correspondence problem 

• Epipolar geometry constrains our search, but 
we still have a difficult correspondence 
problem. 



Basic stereo matching algorithm 

• If necessary, rectify the two stereo images to transform 
epipolar lines into scanlines 

• For each pixel x in the first image 
– Find corresponding epipolar scanline in the right image 
– Examine all pixels on the scanline and pick the best match x’ 
– Compute disparity x-x’ and set depth(x) = fB/(x-x’) 



Matching cost 

disparity 

Left Right 

scanline 

Correspondence search 

• Slide a window along the right scanline and 
compare contents of that window with the 
reference window in the left image 

• Matching cost: SSD or normalized correlation 



Left Right 

scanline 

Correspondence search 

SSD 



Left Right 

scanline 

Correspondence search 

Norm. corr 



Effect of window size 

W = 3 W = 20 

• Smaller window 
+ More detail 

– More noise 

 

• Larger window 
+ Smoother disparity maps 

– Less detail 

 



Failures of correspondence search 

Textureless surfaces Occlusions, repetition 

Non-Lambertian surfaces, specularities 



Results with window search 

Window-based matching Ground truth 

Data 



How can we improve window-based 
matching? 

 

• So far, matches are independent for each 
point 

 

• What constraints or priors can we add? 



Stereo constraints/priors 

• Uniqueness  
– For any point in one image, there should be at 

most one matching point in the other image 



Stereo constraints/priors 
• Uniqueness  

– For any point in one image, there should be at most 
one matching point in the other image 

• Ordering 
– Corresponding points should be in the same order in 

both views 



Stereo constraints/priors 
• Uniqueness  

– For any point in one image, there should be at most 
one matching point in the other image 

• Ordering 
– Corresponding points should be in the same order in 

both views 

Ordering constraint doesn’t hold 



Priors and constraints 
• Uniqueness  

– For any point in one image, there should be at most one 
matching point in the other image 

• Ordering 
– Corresponding points should be in the same order in both 

views 

• Smoothness 
– We expect disparity values to change slowly (for the most 

part) 



Scanline stereo 

• Try to coherently match pixels on the entire scanline 

• Different scanlines are still optimized independently 

Left image Right image 



“Shortest paths” for scan-line stereo 

Left image 

Right image 

Can be implemented with dynamic programming 

 Ohta & Kanade ’85, Cox et al. ‘96 
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Slide credit: Y. Boykov 



Coherent stereo on 2D grid 

• Scanline stereo generates streaking artifacts 

 

 

 

 

 

 

 

 

 

 

• Can’t use dynamic programming to find spatially 

coherent disparities/ correspondences on a 2D grid 



Stereo matching as energy minimization (random field 

interpretation) 

I1 
I2 D 

• Energy functions of this form can be minimized using 

graph cuts 

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization 
via Graph Cuts,  PAMI 2001 
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http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf


Many of these constraints can be encoded in an energy 
function and solved using graph cuts 

Graph cuts Ground truth 

For the latest and greatest:  http://www.middlebury.edu/stereo/  

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy 

Minimization via Graph Cuts,  PAMI 2001 

Before 

http://www.middlebury.edu/stereo/
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf


Active stereo with structured light 

• Project “structured” light patterns onto the object 

• Simplifies the correspondence problem 

• Allows us to use only one camera 

camera  

projector 

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured 

Light and Multi-pass Dynamic Programming. 3DPVT 2002 

http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/


Kinect: Structured infrared light 

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/ 

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/


Potential matches for x have to lie on the corresponding line l’. 

Potential matches for x’ have to lie on the corresponding line l. 

Summary: Key idea: Epipolar constraint 
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Summary 

 
• Epipolar geometry 

– Epipoles are intersection of baseline with image planes 
– Matching point in second image is on a line passing 

through its epipole 
– Fundamental matrix maps from a point in one image to a 

line (its epipolar line) in the other 
– Can solve for F given corresponding points (e.g., interest 

points) 

 
• Stereo depth estimation 

– Estimate disparity by finding corresponding points along 
scanlines 

– Depth is inverse to disparity 

 



Structure from motion 

• Given a set of corresponding points in two or more 

images, compute the camera parameters and the 3D point 

coordinates 

Camera 1 
Camera 2 Camera 3 

R1,t1 R2,t2 
R3,t3 

? ? ? Slide credit: 

Noah Snavely 

? 



Structure from motion ambiguity 

• If we scale the entire scene by some factor k and, at 

the same time, scale the camera matrices by the 

factor of 1/k, the projections of the scene points in the 

image remain exactly the same: 

It is impossible to recover the absolute scale of the scene! 
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How do we know the scale of image content? 







Structure from motion ambiguity 

• If we scale the entire scene by some factor k and, at 

the same time, scale the camera matrices by the 

factor of 1/k, the projections of the scene points in the 

image remain exactly the same  

 

• More generally: if we transform the scene using a 

transformation Q and apply the inverse 

transformation to the camera matrices, then the 

images do not change 
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Projective structure from motion 

• Given: m images of n fixed 3D points  
 

• xij = Pi Xj ,  i = 1,… , m,    j = 1, … , n   
 

• Problem: estimate m projection matrices Pi and n 3D points 
Xj from the mn corresponding points xij 

 

x1j 

x2j 

x3j 

Xj 

P1 

P2 

P3 

Slides from Lana Lazebnik  



Projective structure from motion 
• Given: m images of n fixed 3D points  

 

• xij = Pi Xj ,  i = 1,… , m,    j = 1, … , n   
 

• Problem: estimate m projection matrices Pi 
and n 3D points Xj from the mn corresponding 
points xij 

• With no calibration info, cameras and points 
can only be recovered up to a 4x4 projective 
transformation Q: 

• X → QX, P → PQ-1 
• We can solve for structure and motion when  

• 2mn >= 11m +3n – 15 
• For two cameras, at least 7 points are needed 

 



Projective ambiguity 
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Projective ambiguity 



Bundle adjustment 

• Non-linear method for refining structure and motion 

• Minimizing reprojection error 
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Photo synth 

Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Exploring 

photo collections in 3D," SIGGRAPH 2006 

http://photosynth.net/ 

http://phototour.cs.washington.edu/Photo_Tourism.pdf
http://phototour.cs.washington.edu/Photo_Tourism.pdf
http://photosynth.net/

