### **Recognition: Overview and History**



Slides from Lana Lazebnik, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce

#### How many visual object categories are there?



Biederman 1987





### Specific recognition tasks



### Scene categorization or classification



### Image annotation / tagging / attributes



### **Object detection**



### Image parsing / semantic segmentation



### Scene understanding?



# Project 3: Scene recognition with bag of words <a href="http://cs.brown.edu/courses/csci1430/proj3/">http://cs.brown.edu/courses/csci1430/proj3/</a>

"A nobotisswhatteveerrooomheeissiin"?? Bert Cooper, Mad Men

### Recognition is all about modeling variability



Variability:

Camera position Illumination Shape parameters



Within-class variations?

#### Within-class variations













## History of ideas in recognition

• 1960s – early 1990s: the geometric era



#### Shape: assumed known

Roberts (1965); Lowe (1987); Faugeras & Hebert (1986); Grimson & Lozano-Perez (1986); Huttenlocher & Ullman (1987)

### **Recall: Alignment**

 Alignment: fitting a model to a transformation between pairs of features (*matches*) in two images



### Recognition as an alignment problem: Block world



L. G. Roberts, <u>Machine</u> <u>Perception of Three</u> <u>Dimensional Solids</u>, Ph.D. thesis, MIT Department of Electrical Engineering, 1963.

**Fig. 1.** A system for recognizing 3-d polyhedral scenes. a) L.G. Roberts. b)A blocks world scene. c)Detected edges using a 2x2 gradient operator. d) A 3-d polyhedral description of the scene, formed automatically from the single image. e) The 3-d scene displayed with a viewpoint different from the original image to demonstrate its accuracy and completeness. (b) - e) are taken from [64] with permission MIT Press.)

#### J. Mundy, Object Recognition in the Geometric Era: a Retrospective, 2006

# Representing and recognizing object categories is harder...



ACRONYM (Brooks and Binford, 1981) Binford (1971), Nevatia & Binford (1972), Marr & Nishihara (1978)

### Recognition by components

Biederman (1987)



#### http://en.wikipedia.org/wiki/Recognition\_by\_Components\_Theory



#### Generalized cylinders Ponce et al. (1989)



### **General shape primitives?**



Forsyth (2000)

Zisserman et al. (1995)

## History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models



Empirical models of image variability

#### **Appearance-based techniques**

Turk & Pentland (1991); Murase & Nayar (1995); etc.

### Eigenfaces (Turk & Pentland, 1991)



| Experimental            | Correct/Unknown Recognition Percentage |             |        |
|-------------------------|----------------------------------------|-------------|--------|
| Condition               | Lighting                               | Orientation | Scale  |
| Forced classification   | 96/0                                   | 85/0        | 64/0   |
| Forced 100% accuracy    | 100/19                                 | 100/39      | 100/60 |
| Forced 20% unknown rate | 100/20                                 | 94/20       | 74/20  |

### **Color Histograms**







Swain and Ballard, Color Indexing, IJCV 1991.

### Appearance manifolds





H. Murase and S. Nayar, Visual learning and recognition of 3-d objects from appearance, IJCV 1995

# Limitations of global appearance models

- Requires global registration of patterns
- Not robust to clutter, occlusion, geometric transformations



## History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- 1990s present: sliding window approaches

### **Sliding window approaches**



### Sliding window approaches





- Belhumeur, Hespanha, & Kriegman, 1997
- Schneiderman & Kanade 2004
- Viola and Jones, 2000



- Schneiderman & Kanade, 2004
- Argawal and Roth, 2002
- Poggio et al. 1993

## History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- Mid-1990s: sliding window approaches
- Late 1990s: local features

# Local features for object instance recognition

















D. Lowe (1999, 2004)

#### Large-scale image search

Combining local features, indexing, and spatial constraints



Image credit: K. Grauman and B. Leibe

#### Large-scale image search

Combining local features, indexing, and spatial constraints



Philbin et al. '07

### Large-scale image search

#### Combining local features, indexing, and spatial constraints

#### **Google Goggles in Action**

Click the icons below to see the different ways Google Goggles can be used.



Available on phones that run Android 1.6+ (i.e. Donut or Eclair)

# History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- Mid-1990s: sliding window approaches
- Late 1990s: local features
- Early 2000s: parts-and-shape models

### Parts-and-shape models

- Model:
  - Object as a set of parts
  - Relative locations between parts
  - Appearance of part


#### **Constellation models**



Weber, Welling & Perona (2000), Fergus, Perona & Zisserman (2003)

# Pictorial structure model

Fischler and Elschlager(73), Felzenszwalb and Huttenlocher(00)



### Discriminatively trained part-based models



P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, <u>"Object Detection</u> with Discriminatively Trained Part-Based Models," PAMI 2009

# History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- Mid-1990s: sliding window approaches
- Late 1990s: local features
- Early 2000s: parts-and-shape models
- Mid-2000s: bags of features

### **Bag-of-features models**



# **Bag-of-features models**







Svetlana Lazebnik

# Objects as texture

• All of these are treated as being the same



 No distinction between foreground and background: scene recognition?

### Origin 1: Texture recognition

- Texture is characterized by the repetition of basic elements or *textons*
- For stochastic textures, it is the identity of the textons, not their spatial arrangement, that matters



Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

### Origin 1: Texture recognition



Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Orderless document representation: frequencies of words
from a dictionary Salton & McGill (1983)

Orderless document representation: frequencies of words
from a dictionary Salton & McGill (1983)



US Presidential Speeches Tag Cloud http://chir.ag/phernalia/preztags/

Orderless document representation: frequencies of words
from a dictionary Salton & McGill (1983)



US Presidential Speeches Tag Cloud http://chir.ag/phernalia/preztags/

Orderless document representation: frequencies of words
from a dictionary Salton & McGill (1983)

| 2007-01-23: State of the Union Address<br>George W. Bush (2001-) |                           |                                                                                                                                                                                                                                                        |  |  |  |
|------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| abandon<br>choices c<br>deficit c                                | 1962-                     | 10-22: Soviet Missiles in Cuba<br>John F. Kennedy (1961-63)                                                                                                                                                                                            |  |  |  |
| expand                                                           | aban do<br><b>build</b> i | 1941-12-08: Request for a Declaration of War<br>Franklin D. Roosevelt (1933-45)                                                                                                                                                                        |  |  |  |
| insurgen<br>palestini                                            | declined                  | abandoning acknowledge aggression aggressors airplanes armaments <b>armed army</b> assault assembly authorizations bombing<br>britain british cheerfully claiming constitution curtail december defeats defending delays democratic dictators disclose |  |  |  |
| septemt<br>violenc                                               | halt ha<br>modern         | economic empire endanger facts false forgotten fortunes france freedom fulfilled fullness fundamental gangsters german germany god guam harbor hawaii hemisphere hint hitler hostilities immune improving indies innumerable                           |  |  |  |
|                                                                  | recessio                  | invasion islands isolate japanese labor metals midst midway navy nazis obligation offensive                                                                                                                                                            |  |  |  |
|                                                                  | surveil                   | repaired <b>resisting</b> retain revealing rumors seas soldiers speaks speedy stamina strength sunday sunk supremacy tanks taxes                                                                                                                       |  |  |  |
|                                                                  |                           | treachery true tyranny undertaken victory Wartime washington                                                                                                                                                                                           |  |  |  |

US Presidential Speeches Tag Cloud http://chir.ag/phernalia/preztags/

## Bag-of-features steps

- 1. Extract features
- 2. Learn "visual vocabulary"
- 3. Quantize features using visual vocabulary
- 4. Represent images by frequencies of "visual words"



# **1. Feature extraction**

Regular grid or interest regions





# **1. Feature extraction**



**Detect patches** 

# **1. Feature extraction**





# 2. Learning the visual vocabulary



# 2. Learning the visual vocabulary



# 2. Learning the visual vocabulary



## K-means clustering

 Want to minimize sum of squared Euclidean distances between points x<sub>i</sub> and their nearest cluster centers m<sub>k</sub>

$$D(X,M) = \sum (x_i - m_k)^2$$

cluster k pointi in cluster k

Algorithm:

- Randomly initialize K cluster centers
- Iterate until convergence:
  - Assign each data point to the nearest center
  - Recompute each cluster center as the mean of all points assigned to it

## Clustering and vector quantization

- Clustering is a common method for learning a visual vocabulary or codebook
  - Unsupervised learning process
  - Each cluster center produced by k-means becomes a codevector
  - Codebook can be learned on separate training set
  - Provided the training set is sufficiently representative, the codebook will be "universal"
- The codebook is used for quantizing features
  - A vector quantizer takes a feature vector and maps it to the index of the nearest codevector in a codebook
  - Codebook = visual vocabulary
  - Codevector = visual word

### Example codebook







### Another codebook



### Visual vocabularies: Issues

- How to choose vocabulary size?
  - Too small: visual words not representative of all patches
  - Too large: quantization artifacts, overfitting
- Computational efficiency
  - Vocabulary trees (Nister & Stewenius, 2006)



# But what about layout?



All of these images have the same color histogram

# Spatial pyramid



Compute histogram in each spatial bin

### Spatial pyramid representation

- Extension of a bag of features
- Locally orderless representation at several levels of resolution





Lazebnik, Schmid & Ponce (CVPR 2006)

### Spatial pyramid representation

- Extension of a bag of features
- Locally orderless representation at several levels of resolution



Lazebnik, Schmid & Ponce (CVPR 2006)

### Spatial pyramid representation

- Extension of a bag of features
- Locally orderless representation at several levels of resolution



Lazebnik, Schmid & Ponce (CVPR 2006)

#### Scene category dataset



# Multi-class classification results (100 training images per class)

|                 | Weak fe        | atures           | Strong features        |                  |
|-----------------|----------------|------------------|------------------------|------------------|
|                 | (vocabulary    | v size: 16)      | (vocabulary size: 200) |                  |
| Level           | Single-level   | Pyramid          | Single-level           | Pyramid          |
| $0(1 \times 1)$ | $45.3 \pm 0.5$ |                  | $72.2 \pm 0.6$         |                  |
| $1(2 \times 2)$ | $53.6 \pm 0.3$ | $56.2\pm\!0.6$   | $77.9 \pm 0.6$         | $79.0 \pm 0.5$   |
| $2(4 \times 4)$ | $61.7 \pm 0.6$ | $64.7 \pm 0.7$   | $79.4 \pm 0.3$         | <b>81.1</b> ±0.3 |
| 3 (8 × 8)       | $63.3 \pm 0.8$ | <b>66.8</b> ±0.6 | $77.2 \pm 0.4$         | $80.7 \pm 0.3$   |

#### Caltech101 dataset

http://www.vision.caltech.edu/Image\_Datasets/Caltech101/Caltech101.html



#### Multi-class classification results (30 training images per class)

|       | Weak feat      | ures (16)      | Strong feat    | ures (200)              |
|-------|----------------|----------------|----------------|-------------------------|
| Level | Single-level   | Pyramid        | Single-level   | Pyramid                 |
| 0     | $15.5 \pm 0.9$ |                | $41.2 \pm 1.2$ |                         |
| 1     | $31.4 \pm 1.2$ | $32.8 \pm 1.3$ | $55.9 \pm 0.9$ | $57.0\pm0.8$            |
| 2     | $47.2 \pm 1.1$ | $49.3 \pm 1.4$ | $63.6 \pm 0.9$ | $\textbf{64.6} \pm 0.8$ |
| 3     | $52.2 \pm 0.8$ | $54.0 \pm 1.1$ | $60.3 \pm 0.9$ | $64.6\pm\!0.7$          |

# Bags of features for action recognition

#### Space-time interest points



Juan Carlos Niebles, Hongcheng Wang and Li Fei-Fei, <u>Unsupervised Learning of Human</u> <u>Action Categories Using Spatial-Temporal Words</u>, IJCV 2008.

# History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- Mid-1990s: sliding window approaches
- Late 1990s: local features
- Early 2000s: parts-and-shape models
- Mid-2000s: bags of features
- Present trends: combination of local and global methods, data-driven methods, context

# **Global scene descriptors**

• The "gist" of a scene: Oliva & Torralba (2001)



#### http://people.csail.mit.edu/torralba/code/spatialenvelope/

# Data-driven methods



J. Hays and A. Efros, Scene Completion using Millions of Photographs, SIGGRAPH 2007
## Data-driven methods



J. Tighe and S. Lazebnik, ECCV 2010

## **Geometric context**



#### D. Hoiem, A. Efros, and M. Herbert. Putting Objects in Perspective. CVPR 2006.

• Reading license plates, zip codes, checks



- Reading license plates, zip codes, checks
- Fingerprint recognition



- Reading license plates, zip codes, checks
- Fingerprint recognition
- Face detection





[Face priority AE] When a bright part of the face is too bright

- Reading license plates, zip codes, checks
- Fingerprint recognition
- Face detection
- Recognition of flat textured objects (CD covers, book covers, etc.)

