Mixtures of Gaussians and Advanced Feature Encoding

Computer Vision CS 143, Brown

James Hays

Many slides from Derek Hoiem, Florent Perronnin, and Hervé Jégou

Why do good recognition systems go bad?

- E.g. Why isn't our Bag of Words classifier at 90% instead of 70%?
- Training Data
 - Huge issue, but not necessarily a variable you can manipulate.
- Learning method
 - Probably not such a big issue, unless you're learning the representation (e.g. deep learning).
- Representation
 - Are the local features themselves lossy? Guest lecture Nov 8th will address this.
 - What about feature quantization? That's VERY lossy.

Standard Kmeans Bag of Words

http://www.cs.utexas.edu/~grauman/courses/fall2009/papers/bag_of_visual_words.pdf

Today's Class

- More advanced quantization / encoding methods that represent the state-of-the-art in image classification and image retrieval.
 - Soft assignment (a.k.a. Kernel Codebook)
 - VLAD
 - Fisher Vector

• Mixtures of Gaussians

Bag of Visual Words is only about **counting** the number of local descriptors assigned to each Voronoi region

Why not including **other statistics**?

http://www.cs.utexas.edu/~grauman/courses/fall2009/papers/bag_of_visual_words.pdf

We already looked at the Spatial Pyramid

But today we're not talking about ways to preserve spatial information.

Motivation

Bag of Visual Words is only about **counting** the number of local descriptors assigned to each Voronoi region

Why not including **other statistics**? For instance:

mean of local descriptors ×

http://www.cs.utexas.edu/~grauman/courses/fall2009/papers/bag_of_visual_words.pdf

Motivation

Bag of Visual Words is only about **counting** the number of local descriptors assigned to each Voronoi region

Why not including **other statistics**? For instance:

- mean of local descriptors
- (co)variance of local descriptors

http://www.cs.utexas.edu/~grauman/courses/fall2009/papers/bag_of_visual_words.pdf

Simple case: Soft Assignment

 Called "Kernel codebook encoding" by Chatfield et al. 2011. Cast a weighted vote into the most similar clusters.

Simple case: Soft Assignment

- Called "Kernel codebook encoding" by Chatfield et al. 2011. Cast a weighted vote into the most similar clusters.
- This is fast and easy to implement (try it for Project 3!) but it does have some downsides for image retrieval – the inverted file index becomes less sparse.

A first example: the VLAD

Jégou, Douze, Schmid and Pérez, "Aggregating local descriptors into a compact image representation", CVPR'10.

A first example: the VLAD

A graphical representation of $v_i = \sum_{x_t: NN(x_t) = \mu_i} x_t - \mu_i$

Jégou, Douze, Schmid and Pérez, "Aggregating local descriptors into a compact image representation", CVPR'10.

The Fisher vector Score function

Given a likelihood function u_{λ} with parameters λ , the score function of a given sample X is given by:

$$G_{\lambda}^{X} = \nabla_{\lambda} \log u_{\lambda}(X)$$

 \rightarrow Fixed-length vector whose dimensionality depends only on # parameters.

Intuition: direction in which the parameters λ of the model should we modified to better fit the data.

Aside: Mixture of Gaussians (GMM)

- For Fisher Vector image representations, u_λ is a GMM.
- GMM can be thought of as "soft" kmeans.

• Each component has a mean and a standard deviation along each direction (or full covariance)

Gaussian Mixture Example: Start

This looks like a soft version of kmeans!

Advance apologies: in Black and White this example will be incomprehensible

Copyright © 2001, 2004, Andrew W. Moore

Clustering with Gaussian Mixtures: Slide 40

After first iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

Clustering with Gaussian Mixtures: Slide 44

After 5th iteration

After 6th iteration

After 20th iteration

Some Bio Assay data

GMM clustering of the assay data

Resulting Density Estimator

FV formulas:

FV formulas:

· gradient wrt to w

\rightarrow soft BOV

 $\gamma_t(i)$ = soft-assignment of patch t to Gaussian i

FV formulas:

• gradient wrt to w

 \rightarrow soft BOV

- gradient wrt to μ and σ

$$\mathcal{G}_{\mu,i}^{X} = \frac{1}{T\sqrt{w_i}} \sum_{t=1}^{T} \gamma_t(i) \left(\frac{x_t - \mu_i}{\sigma_i}\right)$$
$$\mathcal{G}_{\sigma,i}^{X} = \frac{1}{T\sqrt{2w_i}} \sum_{t=1}^{T} \gamma_t(i) \left[\frac{(x_t - \mu_i)^2}{\sigma_i^2} - 1\right]$$

 $\gamma_t(i)$ = soft-assignment of patch t to Gaussian i

 \rightarrow compared to BOV, include **higher-order statistics** (up to order 2)

Let us denote: D = feature dim, N = # Gaussians

- BOV = N-dim
- FV = 2DN-dim

FV formulas:

• gradient wrt to w

 \rightarrow soft BOV

- gradient wrt to μ and σ

$$\mathcal{G}_{\mu,i}^{X} = \frac{1}{T\sqrt{w_i}} \sum_{t=1}^{T} \gamma_t(i) \left(\frac{x_t - \mu_i}{\sigma_i}\right)$$
$$\mathcal{G}_{\sigma,i}^{X} = \frac{1}{T\sqrt{2w_i}} \sum_{t=1}^{T} \gamma_t(i) \left[\frac{(x_t - \mu_i)^2}{\sigma_i^2} - 1\right]$$

 $\gamma_t(i)$ = soft-assignment of patch t to Gaussian i

- \rightarrow compared to BOV, include **higher-order statistics** (up to order 2)
- \rightarrow FV much higher-dim than BOV for a given visual vocabulary size \rightarrow FV much faster to compute than BOV for a given feature dim

The Fisher vector

Dimensionality reduction on local descriptors

Perform PCA on local descriptors:

- → uncorrelated features are more consistent with diagonal assumption of covariance matrices in GMM
- \rightarrow FK performs whitening and enhances low-energy (possibly noisy) dimensions

The Fisher vector

Normalization: variance stabilization

→ Variance stabilizing transforms of the form:

 $f(z) = \operatorname{sign}(z)|z|^{\alpha}$ with $0 \le \alpha \le 1$ (with $\alpha = 0.5$ by default)

can be used on the FV (or the VLAD).

 \rightarrow Reduce impact of bursty visual elements

Jégou, Douze, Schmid, "On the burstiness of visual elements", ICCV'09.

Datasets for image retrieval

INRIA Holidays dataset: 1491 shots of personal Holiday snapshot500 queries, each associated with a small number of results 1-11 results1 million distracting images (with some "false false" positives)

Hervé Jégou, Matthijs Douze and Cordelia Schmid Hamming Embedding and Weak Geometric consistency for large-scale image search, *ECCV'08*

Example on Holidays:

From: Jégou, Perronnin, Douze, Sánchez, Pérez and Schmid, "Aggregating local descriptors into compact codes", TPAMI'11.

Descriptor	K	D			Holidays	(mAP)		
			D' = D	$\rightarrow D'$ =2048	$\rightarrow D'$ =512	$\rightarrow D'$ =128	$\rightarrow D'$ =64	$\rightarrow D'=32$
BOW	1 000	1 000	40.1		43.5	44.4	43.4	40.8
	20000	20000	43.7	41.8	44.9	45.2	44.4	41.8
Fisher (μ)	16	1 0 2 4	54.0		54.6	52.3	49.9	46.6
	64	4 0 9 6	59.5	60.7	61.0	56.5	52.0	48.0
	256	16 384	62.5	62.6	57.0	53.8	50.6	48.6
VLAD	16	1 0 2 4	52.0		52.7	52.6	50.5	47.7
	64	4 0 9 6	55.6	57.6	59.8	55.7	52.3	48.4
	256	16 384	58.7	62.1	56.7	54.2	51.3	48.1

Example on Holidays:

From: Jégou, Perronnin, Douze, Sánchez, Pérez and Schmid, "Aggregating local descriptors into compact codes", TPAMI'11.

Descriptor	K	D			Holidays	s (mAP)		
			D' = D	$\rightarrow D'$ =2048	$\rightarrow D'$ =512	$\rightarrow D'$ =128	ightarrow D'=64	$\rightarrow D'=32$
BOW	1 000	1 000	40.1		43.5	44.4	43.4	40.8
	20 000	20000	43.7	41.8	44.9	45.2	44.4	41.8
Fisher (μ)	16	1 0 2 4	54.0		54.6	52.3	49.9	46.6
	64	4 0 9 6	59.5	60.7	61.0	56.5	52.0	48.0
	256	16 384	62.5	62.6	57.0	53.8	50.6	48.6
VLAD	16	1 0 2 4	52.0		52.7	52.6	50.5	47.7
	64	4 0 9 6	55.6	57.6	59.8	55.7	52.3	48.4
	256	16 384	58.7	62.1	56.7	54.2	51.3	48.1

 \rightarrow second order statistics are not essential for retrieval

Example on Holidays:

From: Jégou, Perronnin, Douze, Sánchez, Pérez and Schmid, "Aggregating local descriptors into compact codes", TPAMI'11.

Descriptor	K	D			Holidays	(mAP)		
			D' = D	$\rightarrow D'$ =2048	$\rightarrow D'$ =512	$\rightarrow D'$ =128	$\rightarrow D'$ =64	$\rightarrow D'=32$
BOW	1 000	1 000	40.1		43.5	44.4	43.4	40.8
	20 000	20 000	43.7	41.8	44.9	45.2	44.4	41.8
Fisher (μ)	16	1 0 2 4	54.0		54.6	52.3	49.9	46.6
	64	4 0 9 6	59.5	60.7	61.0	56.5	52.0	48.0
	256	16 384	62.5	62.6	57.0	53.8	50.6	48.6
VLAD	16	1 0 2 4	52.0		52.7	52.6	50.5	47.7
	64	4 096	55.6	57.6	59.8	55.7	52.3	48.4
	256	16 384	58.7	62.1	56.7	54.2	51.3	48.1

 \rightarrow second order statistics are not essential for retrieval

 \rightarrow even for the same feature dim, the FV/VLAD can beat the BOV

Example on Holidays:

From: Jégou, Perronnin, Douze, Sánchez, Pérez and Schmid, "Aggregating local descriptors into compact codes", TPAMI'11.

Descriptor	K	D			Holidays	(mAP)		
			D' = D	$\rightarrow D'$ =2048	$\rightarrow D'$ =512	$\rightarrow D'$ =128	$\rightarrow D'$ =64	$\rightarrow D'=32$
BOW	1 000	1 000	40.1		43.5	44.4	43.4	40.8
	20000	20000	43.7	41.8	44.9	45.2	44.4	41.8
Fisher (μ)	16	1 0 2 4	54.0		54.6	52.3	49.9	46.6
	64	4 0 9 6	59.5	60.7	61.0	56.5	52.0	48.0
	256	16384	62.5	62.6	57.0	53.8	50.6	48.6
VLAD	16	1 0 2 4	52.0		52.7	52.6	50.5	47.7
	64	4 0 9 6	55.6	57.6	59.8	55.7	52.3	48.4
	256	16384	58.7	62.1	56.7	54.2	51.3	48.1

 \rightarrow second order statistics are not essential for retrieval

- \rightarrow even for the same feature dim, the FV/VLAD can beat the BOV
- ightarrow soft assignment + whitening of FV helps when number of Gaussians \uparrow

Example on Holidays:

From: Jégou, Perronnin, Douze, Sánchez, Pérez and Schmid, "Aggregating local descriptors into compact codes", TPAMI'11.

Descriptor	K	D			Holidays	(mAP)		
			D' = D	$\rightarrow D'$ =2048	$\rightarrow D'$ =512	$\rightarrow D'$ =128	$\rightarrow D'$ =64	$\rightarrow D'=32$
BOW	1 000	1 000	40.1		43.5	44.4	43.4	40.8
	20000	20000	43.7	41.8	44.9	45.2	44.4	41.8
Fisher (μ)	16	1 0 2 4	54.0		54.6	52.3	49.9	46.6
	64	4096	59.5	60.7	61.0	56.5	52.0	48.0
	256	16 384	62.5	62.6	57.0	53.8	50.6	48.6
VLAD	16	1 0 2 4	52.0		52.7	52.6	50.5	47.7
	64	4 0 9 6	55.6	57.6	59.8	55.7	52.3	48.4
	256	16 384	58.7	62.1	56.7	54.2	51.3	48.1

 \rightarrow second order statistics are not essential for retrieval

- \rightarrow even for the same feature dim, the FV/VLAD can beat the BOV
- ightarrow soft assignment + whitening of FV helps when number of Gaussians \uparrow
- \rightarrow after dim-reduction however, the FV and VLAD perform similarly

Examples Classification

Example on PASCAL VOC 2007:

From: Chatfield, Lempitsky, Vedaldi and Zisserman, "The devil is in the details: an evaluation of recent feature encoding methods", BMVC'11.

	Feature dim	mAP
VQ	25K	55.30
KCB	25K	56.26
LLC	25K	57.27
SV	41K	58.16
FV	132K	61.69

Examples Classification

Example on PASCAL VOC 2007:

From: Chatfield, Lempitsky, Vedaldi and Zisserman, "The devil is in the details: an evaluation of recent feature encoding methods", BMVC'11.

	Feature dim	mAP
VQ	25K	55.30
KCB	25K	56.26
LLC	25K	57.27
SV	41K	58.16
FV	132K	61.69

- → FV outperforms BOV-based techniques including:
 - VQ: plain vanilla BOV
 - KCB: BOV with soft assignment
 - LLC: BOV with sparse coding

Examples Classification

Example on PASCAL VOC 2007:

From: Chatfield, Lempitsky, Vedaldi and Zisserman, "The devil is in the details: an evaluation of recent feature encoding methods", BMVC'11.

	Feature dim	mAP
VQ	25K	55.30
KCB	25K	56.26
LLC	25K	57.27
SV	41K	58.16
FV	132K	61.69

- → FV outperforms BOV-based techniques including:
 - VQ: plain vanilla BOV
 - KCB: BOV with soft assignment
 - LLC: BOV with sparse coding
- \rightarrow including 2nd order information is important for classification

The INRIA package: http://lear.inrialpes.fr/src/inria_fisher/

The Oxford package:

http://www.robots.ox.ac.uk/~vgg/research/encoding_eval/

Vlfeat does it too! http://www.vlfeat.org

Summary

- We've looked at methods to better characterize the distribution of visual words in an image:
 - Soft assignment (a.k.a. Kernel Codebook)
 - VLAD
 - Fisher Vector

 Mixtures of Gaussians is conceptually a soft form of kmeans which can better model the data distribution.