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Why do good recognition systems go bad? 

• E.g. Why isn’t our Bag of Words classifier at 90% 
instead of 70%? 

• Training Data 
– Huge issue, but not necessarily a variable you can 

manipulate. 

• Learning method 
– Probably not such a big issue, unless you’re learning 

the representation (e.g. deep learning). 

• Representation 
– Are the local features themselves lossy? Guest lecture 

Nov 8th will address this. 

– What about feature quantization? That’s VERY lossy. 



Standard Kmeans Bag of Words  

http://www.cs.utexas.edu/~grauman/courses/fall2009/papers/bag_of_visual_words.pdf 



Today’s Class 

• More advanced quantization / encoding 
methods that represent the state-of-the-art in 
image classification and image retrieval. 

– Soft assignment (a.k.a. Kernel Codebook) 

– VLAD 

– Fisher Vector 

 

• Mixtures of Gaussians 



Motivation 

Bag of Visual Words is only about counting the number of local 
descriptors assigned to each Voronoi region 

 

Why not including other statistics?  

http://www.cs.utexas.edu/~grauman/courses/fall2009/papers/bag_of_visual_words.pdf 



We already looked at the Spatial Pyramid 

level 2 level 0 level 1 

But today we’re not talking about ways to preserve spatial information. 
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Motivation 

Bag of Visual Words is only about counting the number of local 
descriptors assigned to each Voronoi region 

 

Why not including other statistics? For instance: 

• mean of local descriptors 

• (co)variance of local descriptors 

http://www.cs.utexas.edu/~grauman/courses/fall2009/papers/bag_of_visual_words.pdf 



Simple case: Soft Assignment 

• Called “Kernel codebook encoding” by 
Chatfield et al. 2011. Cast a weighted vote into 
the most similar clusters. 



Simple case: Soft Assignment 

• Called “Kernel codebook encoding” by 
Chatfield et al. 2011. Cast a weighted vote into 
the most similar clusters. 

• This is fast and easy to implement (try it for 
Project 3!) but it does have some downsides 
for image retrieval – the inverted file index 
becomes less sparse. 



A first example: the VLAD 

Given a codebook                 , 
e.g. learned with K-means, and a set of 
local descriptors                           : 

 

•  assign:  

 

 

•  compute: 

 

 

• concatenate vi’s +         normalize 

 

Jégou, Douze, Schmid and Pérez, “Aggregating local descriptors into a compact image representation”, CVPR’10. 
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③ vi=sum x-  i for cell i  



A first example: the VLAD 

A graphical representation of 

 

Jégou, Douze, Schmid and Pérez, “Aggregating local descriptors into a compact image representation”, CVPR’10. 



The Fisher vector 
Score function 

 

Given a likelihood function       with parameters , the score function 
of a given sample X is given by: 

 

 

 

 Fixed-length vector whose dimensionality depends only on # 
parameters. 

 

Intuition: direction in which the parameters  of the model should we 
modified to better fit the data. 



Aside: Mixture of Gaussians (GMM) 

• For Fisher Vector image representations, 
is a GMM.  

• GMM can be thought of as “soft” kmeans. 

 

 

 

 

 

 

• Each component has a mean and a standard 
deviation along each direction (or full covariance) 
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This looks like a 

soft version of 

kmeans! 



 



 



 



 



 



 



 



 



 



 



FV formulas: 

 

 

The Fisher vector 
Relationship with the BOV 
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Perronnin and Dance, “Fisher kernels on visual categories for image categorization”, CVPR’07. 



FV formulas: 

• gradient wrt to w    

 

≈  

 

 soft BOV 

 

        = soft-assignment of patch t to Gaussian i 
 

 

 

The Fisher vector 
Relationship with the BOV 

Perronnin and Dance, “Fisher kernels on visual categories for image categorization”, CVPR’07. 
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• gradient wrt to  and   

  

 

 

 

 

 
 

 

FV formulas: 

• gradient wrt to w    

 

≈  

 

 soft BOV 

 

        = soft-assignment of patch t to Gaussian i 
 

 compared to BOV, include higher-order statistics (up to order 2) 
 

Let us denote: D = feature dim, N = # Gaussians 

• BOV = N-dim 

• FV = 2DN-dim 

 

 

The Fisher vector 
Relationship with the BOV 

Perronnin and Dance, “Fisher kernels on visual categories for image categorization”, CVPR’07. 
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• gradient wrt to  and   

  

 

 

 

 

 
 

 

FV formulas: 

• gradient wrt to w    

 

≈  

 

 soft BOV 

 

        = soft-assignment of patch t to Gaussian i 
 

 compared to BOV, include higher-order statistics (up to order 2) 
 

 FV much higher-dim than BOV for a given visual vocabulary size 

 FV much faster to compute than BOV for a given feature dim 

 

The Fisher vector 
Relationship with the BOV 

Perronnin and Dance, “Fisher kernels on visual categories for image categorization”, CVPR’07. 
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The Fisher vector 
Dimensionality reduction on local descriptors 

Perform PCA on local descriptors: 

 uncorrelated features are more consistent with diagonal assumption of 
covariance matrices in GMM 

 FK performs whitening and enhances low-energy (possibly noisy) 
dimensions 



The Fisher vector 
Normalization: variance stabilization 

 
 

 Variance stabilizing transforms of the form: 

            (with =0.5 by default) 

can be used on the FV (or the VLAD). 

 

 

 

 

 

 

 Reduce impact of bursty visual elements 

Jégou, Douze, Schmid, “On the burstiness of visual elements”, ICCV’09. 

 
 



Datasets for image retrieval 

INRIA Holidays dataset: 1491 shots of personal Holiday snapshot 

 500 queries, each associated with a small number of results 1-11 results 

 1 million distracting images (with some “false false” positives) 

 

 

 

 

 

 

 

 

 

 
 

Hervé Jégou, Matthijs Douze and Cordelia Schmid  

Hamming Embedding and Weak Geometric consistency for large-scale image search, ECCV'08 

 



Examples 
Retrieval 

Example on Holidays: 

 

 

 

 

 

 

 

 

From: Jégou, Perronnin, Douze, Sánchez, Pérez and Schmid, “Aggregating local descriptors into compact codes”, TPAMI’11. 
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Examples 
Retrieval 

Example on Holidays: 

 

 

 

 

 

 

 

 

 second order statistics are not essential for retrieval 

 even for the same feature dim, the FV/VLAD can beat the BOV 

 soft assignment + whitening of FV helps when number of Gaussians  

 after dim-reduction however, the FV and VLAD perform similarly 

From: Jégou, Perronnin, Douze, Sánchez, Pérez and Schmid, “Aggregating local descriptors into compact codes”, TPAMI’11. 



Examples 
Classification 

Example on PASCAL VOC 
2007: 

 

 

From: Chatfield, Lempitsky, Vedaldi and Zisserman, 

“The devil is in the details: an evaluation of recent 

feature encoding methods”, BMVC’11. 

Feature 

dim 

mAP 

VQ 25K 55.30 

KCB 25K 56.26 

LLC 25K 57.27 

SV 41K 58.16 

FV 132K 61.69 
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Examples 
Classification 

Example on PASCAL VOC 
2007: 

 

 

From: Chatfield, Lempitsky, Vedaldi and Zisserman, 

“The devil is in the details: an evaluation of recent 

feature encoding methods”, BMVC’11. 

 

 FV outperforms BOV-based 
techniques including: 

• VQ: plain vanilla BOV 

• KCB: BOV with soft 
assignment 

• LLC: BOV with sparse coding 

 

 including 2nd order information 
is important for classification 

 

Feature 

dim 

mAP 

VQ 25K 55.30 

KCB 25K 56.26 

LLC 25K 57.27 

SV 41K 58.16 

FV 132K 61.69 



Packages 

 

The INRIA package: 

http://lear.inrialpes.fr/src/inria_fisher/ 

 

The Oxford package: 

http://www.robots.ox.ac.uk/~vgg/research/encoding_eval/ 

 

Vlfeat does it too! 

http://www.vlfeat.org 

 

http://lear.inrialpes.fr/src/inria_fisher/
http://www.robots.ox.ac.uk/~vgg/research/encoding_eval/
http://www.vlfeat.org/


Summary 

• We’ve looked at methods to better 
characterize the distribution of visual words in 
an image: 

– Soft assignment (a.k.a. Kernel Codebook) 

– VLAD 

– Fisher Vector 

 

• Mixtures of Gaussians is conceptually a soft 
form of kmeans which can better model the 
data distribution. 

 


