Recap: Advanced Feature Encoding

Bag of Visual Words is only about **counting** the number of local descriptors assigned to each Voronoi region (0th order statistics)

Why not including **other statistics**? For instance:

mean of local descriptors (first order statistics) ×

http://www.cs.utexas.edu/~grauman/courses/fall2009/papers/bag_of_visual_words.pdf

Recap: Advanced Feature Encoding

Bag of Visual Words is only about **counting** the number of local descriptors assigned to each Voronoi region (0th order statistics)

Why not including **other statistics**? For instance:

- mean of local descriptors (first order statistics) ×
- (co)variance of local descriptors

http://www.cs.utexas.edu/~grauman/courses/fall2009/papers/bag_of_visual_words.pdf

Recap: Advanced Feature Encoding

- We've looked at methods to better characterize the distribution of visual words in an image:
 - Soft assignment (a.k.a. Kernel Codebook)
 - VLAD
 - Fisher Vector

 Mixtures of Gaussians could be thought of as a soft form of kmeans which can better model the data distribution.

Modern Object Detection

Computer Vision CS 143 Brown

James Hays

Many slides from Derek Hoiem

Recap: Viola-Jones sliding window detector

Fast detection through two mechanisms

- Quickly eliminate unlikely windows
- Use features that are fast to compute

Viola and Jones. Rapid Object Detection using a Boosted Cascade of Simple Features (2001).

Cascade for Fast Detection

- Choose threshold for low false negative rate
- Fast classifiers early in cascade
- Slow classifiers later, but most examples don't get there

Features that are fast to compute

- "Haar-like features"
 - Differences of sums of intensity
 - Thousands, computed at various positions and scales within detection window

Two-rectangle features

Three-rectangle features

Etc.

Integral Images

• ii = cumsum(cumsum(im, 1), 2)

ii(x,y) = Sum of the values in the grey region

How to compute B-A?

How to compute A+D-B-C?

Feature selection with Adaboost

- Create a large pool of features (180K)
- Select features that are discriminative and work well together
 - "Weak learner" = feature + threshold + parity

$$h_j(x) = \begin{cases} 1 & \text{if } p_j f_j(x) < p_j \theta_j \\ 0 & \text{otherwise} \end{cases}$$

- Choose weak learner that minimizes error on the weighted training set
- Reweight

Viola Jones Results

Speed = 15 FPS (in 2001)

False detections							
Detector	10	31	50	65	78	95	167
Viola-Jones	76.1%	88.4%	91.4%	92.0%	92.1%	92.9%	93.9%
Viola-Jones (voting)	81.1%	89.7%	92.1%	93.1%	93.1%	93.2 %	93.7%
Rowley-Baluja-Kanade	83.2%	86.0%	-	-	-	89.2%	90.1%
Schneiderman-Kanade	-	-	-	94.4%	-	-	-
Roth-Yang-Ahuja	-	-	-	-	(94.8%)	-	-

MIT + CMU face dataset

Today's class: Modern Object Category Detection

• Recap of Viola Jones

• Overview of object category detection

- Statistical template matching with sliding window detector
 - Dalal-Triggs pedestrian detector

Object Category Detection

- Focus on object search: "Where is it?"
- Build templates that quickly differentiate object patch from background patch

Challenges in modeling the object class

Illumination

Object pose

Clutter

Occlusions

Intra-class appearance

Challenges in modeling the non-object class

True Detections

Confused with Similar Object

Confused with Dissimilar Objects

General Process of Object Recognition

- 1. Statistical Template in Bounding Box
 - Object is some (x,y,w,h) in image
 - Features defined wrt bounding box coordinates

Template Visualization

Images from Felzenszwalb

- 2. Articulated parts model
 - Object is configuration of parts
 - Each part is detectable

3. Hybrid template/parts model

Detections

Template Visualization

root filters coarse resolution

part filters finer resolution

deformation models

Felzenszwalb et al. 2008

- 4. 3D-ish model
- Object is collection of 3D planar patches under affine transformation

General Process of Object Recognition

- 1. Sliding window
 - Test patch at each location and scale

- 1. Sliding window
 - Test patch at each location and scale

Note – Template did not change size

2. Voting from patches/keypoints

ISM model by Leibe et al.

3. Region-based proposal

Endres Hoiem 2010

General Process of Object Recognition

General Process of Object Recognition

Resolving detection scores

1. Non-max suppression

Resolving detection scores

1. Non-max suppression

"Overlap" score is below some threshold

Resolving detection scores

2. Context/reasoning

(g) Car Detections: Local (h) Ped Detections: Local

Object category detection in computer vision

Goal: detect all pedestrians, cars, monkeys, etc in image

Basic Steps of Category Detection

- 1. Align
 - E.g., choose position, scale orientation
 - How to make this tractable?

- 2. Compare
 - Compute similarity to an example object or to a summary representation
 - Which differences in appearance are important?

Aligned Possible Objects

Sliding window: a simple alignment solution

Each window is separately classified

Statistical Template

 Object model = sum of scores of features at fixed positions

Design challenges

- How to efficiently search for likely objects
 - Even simple models require searching hundreds of thousands of positions and scales
- Feature design and scoring
 - How should appearance be modeled? What features correspond to the object?
- How to deal with different viewpoints?
 - Often train different models for a few different viewpoints
- Implementation details
 - Window size
 - Aspect ratio
 - Translation/scale step size
 - Non-maxima suppression

Example: Dalal-Triggs pedestrian detector

- 1. Extract fixed-sized (64x128 pixel) window at each position and scale
- 2. Compute HOG (histogram of gradient) features within each window
- 3. Score the window with a linear SVM classifier
- 4. Perform non-maxima suppression to remove overlapping detections with lower scores

- Tested with
 - RGB
 Slightly better performance vs. grayscale
 - Grayscale
- Gamma Normalization and Compression
 - Square root Very slightly better performance vs. no adjustment
 - Log

Histogram of gradient orientations

Orientation: 9 bins (for unsigned angles)

Histograms in k x k pixel cells

- Votes weighted by magnitude
- Bilinear interpolation between cells

Slides by Pete Barnum

 $0.16 = w^T x - b$

sign(0.16) = 1

=> pedestrian

Slides by Pete Barnum

Detection examples

Something to think about...

- Sliding window detectors work
 - very well for faces
 - fairly well for cars and pedestrians
 - badly for cats and dogs
- Why are some classes easier than others?

Strengths and Weaknesses of Statistical Template Approach

Strengths

- Works very well for non-deformable objects with canonical orientations: faces, cars, pedestrians
- Fast detection

Weaknesses

- Not so well for highly deformable objects or "stuff"
- Not robust to occlusion
- Requires lots of training data

Tricks of the trade

- Details in feature computation really matter
 - E.g., normalization in Dalal-Triggs improves detection rate by 27% at fixed false positive rate
- Template size
 - Typical choice is size of smallest detectable object
- "Jittering" to create synthetic positive examples
 - Create slightly rotated, translated, scaled, mirrored versions as extra positive examples
- Bootstrapping to get hard negative examples
 - 1. Randomly sample negative examples
 - 2. Train detector
 - 3. Sample negative examples that score > -1
 - 4. Repeat until all high-scoring negative examples fit in memory

Influential Works in Detection

- Sung-Poggio (1994, 1998) : ~2000 citations
 - Basic idea of statistical template detection (I think), bootstrapping to get "face-like" negative examples, multiple whole-face prototypes (in 1994)
- Rowley-Baluja-Kanade (1996-1998) : ~3600
 - "Parts" at fixed position, non-maxima suppression, simple cascade, rotation, pretty good accuracy, fast
- Schneiderman-Kanade (1998-2000,2004) : ~1700
 - Careful feature engineering, excellent results, cascade
- Viola-Jones (2001, 2004) : ~11,000
 - Haar-like features, Adaboost as feature selection, hyper-cascade, very fast, easy to implement
- Dalal-Triggs (2005) : ~6500
 - Careful feature engineering, excellent results, HOG feature, online code
- Felzenszwalb-Huttenlocher (2000): ~2100
 - Efficient way to solve part-based detectors
- Felzenszwalb-McAllester-Ramanan (2008): ~1300
 - Excellent template/parts-based blend